
REPORT DOCUMENTATION PAGE
Form Approved

0MB No. 0704-0188
Public reporting burden for this collection of information is estimated to average 1 tiour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing
this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-
4302. Respondents should be aware that notwithstanding any other provision of law. no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid 0MB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
07-12-2014

2. REPORT TYPE
Final Technical Report

3. DATES COVERED (From - To)
Apr. 01, 09 - Sept. 30, 14

4. TITLE AND SUBTITLE
Computational Modeling and High Performance Computing in

Advanced Material Processing, Synthesis, and Design

5a. CONTRACT NUMBER

5b. GRANT NUIVIBER
N00014-09-1-0842

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Ram Mohan

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

North Carolina A and T State
University
1601 E Market Street
Greensboro, NC 27411-0001

8. PERFORMING ORGANIZATION REPORT
NUMBER

Final Report 210111

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Office of Naval Research
875 North Randolph Street
Arlington, VA 22203-1995

10. SPONSOR/MONITOR'S ACRONYM(S)
ONR 332, Dr. Kenny Lipkowitz

11. SPONSOR/MONITOR'S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

Approved for Public Release; Distribution Unlimited

13. SUPPLEMENTARY NOTES
The views, opinions, and/or findings contained in this report are those of the author (s)

14. ABSTRACT
Computational modeling and simulations involving STEM (science, technology, engineering and
mathematics) disciplines are highly interdisciplinary growing out of complex, challenging,
multi-domain, multi-component and data intensive application needs of several disciplines and
the need for high end computing hardware and software, algorithms and information driven
technologies. The research efforts in this project focused on the synergistic coupling of:

• Computational material science and mechanics of hybrid and light weight polymeric composite
structures

• Computational multi-scale deformation behavior in metallic material systems

• Computational enabling technologies of multi-scale flow simulation investigations with
Lattice-Boltzmann equations and finite volume methods; physics based composite process flow
modeling in GPU systems; and probabilistic methods to understand uncertainties in
deterministic composite processing flow models.

15. SUBJECT TERMS
Computational modeling, high performance computing, material science and mechanics, polymer
composites, metallic nanolayered composites, nanomechanics, probabilistic methods

16. SECURITY CLASSIFICATION OF:

a. REPORT
uu

b. ABSTRACT
UU

c. THIS PAGE
UU

17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

320

19a. NAME OF RESPONSIBLE PERSON
Ram Mohan

19b. TELEPHONE NUMBER (include area
code)

336-285-2867

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39.18

Award Information

FINAL TECHNICAL REPORT
Award Number N00014-09-1-0842
Title of Research Computational Modeling and High Performance

Computing in Advanced Material Processing, Synthesis,
and Design

Principal Investigator Dr. Ram Mohan
Organization North Carolina A&T State University, Greensboro, NC
Period of Performance April 1, 2009 - September 30, 2014

Final Technical Report
April 01, 2009 - September 30, 2014

ONE Award Number: N00014-09-1-842
PR Number: 09PR07107-00

Computational Modeling and High Performance Computing in Advanced
Materials Processing, Synthesis, and Design

Performing Institution
North Carolina A&T State University (PI: Prof. Ram Mohan)

Office of Naval Research Technical Representative
Dr. Kenny Lipkowitz (Code: ONR 332)

Technical Point of Contact

Prof Ram Mohan
Professor, Nanoengineering

Joint School of Nanoscience and Nanoengineering
North Carolina A&T State University

2907 E Lee Street
. Greensboro, NC 27401

Phone:336-285-2867
Fax:336-500-0115

E-mail: rvmohan@ncat.edu

.^0\v\U\QO^^

TECHNICAL SECTION 4

TECHNICAL OBJECTIVES 4

TECHNICAL APPROACH 7

TECHNICAL ACCOMPLISHMENTS SUMMARY 11

A-1: COMPUTATIONAL MATERIAL SCIENCE AND MECHANICS OF HYBRID AND LIGHT WEIGHT POLYMERIC COMPOSITE STRUCTURES 11
A-l-l: Atomistic Modeling in Polymer Nanocomposite Systems - Applications to Mechanics of Multi-Scale
Materials 11
A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar Nanofiber Layers on the
Delamination Behavior in an Epoxy Fiber Glass Composite 12

A-2 COMPUTATIONAL MULTI-SCALE DEFORMATION BEHAVIOR IN METALLIC MATERIAL SYSTEMS 12
A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation in metallic systems 13
A-2-2 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack Propagation in Ni-AI Bilayer
Composite 13

B-1 MULTI-SCALE SIMULATION INVESTIGATIONS OF NANOFIBER RESIN INTERACTIONS USING LATTICE BOLTZMANN EQUATIONS AND

FINITE VOLUME METHODS 14

B-2 PHYSICS BASED MODELING AND SIMULATION ON GRAPHICAL PROCESSING UNITS (GPUS) - POROUS MEDIA FLOW IN LIQUID

COMPOSITE MOLDING 14
B-3 PROBABILISTIC ANALYSIS OF PROPERTY UNCERTAINTIES USING RESIN INFUSION FLOW MODELING AND SIMULATIONS 15

DETAILED TECHNICAL REPORT 16

A-1: COMPUTATIONAL MATERIAL SCIENCE AND MECHANICS OF HYBRID AND LIGHT WEIGHT POLYMERIC COMPOSITE STRUCTURES 16
A-l-l: Atomistic Modeling in Polymer Nanocomposite Systems - Applications to Mechanics of Multi-Scale
Materials 16

Computational Study of the Effect of Carbon Vacancy Defects on the Young's Modulus of (6,6) Single Wall Carbon
Nanotube 16
Predictive Mechanical Properties of EPON 862 (DGEBF) cross-linked with Curing Agent W (DETDA) and SWCNT using
MD Simulations - Effect of Carbon Vacancy Defects 34

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar Nanofiber Layers on the
Delamination Behavior in an Epoxy Fiber Glass Composite 49

A-2 COMPUTATIONAL MULTI-SCALE DEFORMATION BEHAVIOR IN METALLIC AND NON-METALLIC SYSTEMS 62
A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation in metallic systems 62
A-2-2 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack Propagation in Ni-AI Bilayer
Composite 88

B-1 MULTI-SCALE SIMULATION INVESTIGATIONS OF NANOFIBER RESIN INTERACTIONS USING LATTICE BOLTZMANN EQUATIONS AND

FINITE VOLUME METHODS 109
B-2 PHYSICS BASED MODELING AND SIMULATION ON GRAPHICAL PROCESSING UNITS (GPUS) - POROUS MEDIA FLOW IN UQUID

COMPOSITE MOLDING 144

Architecture-Performance Interrelationship Analysis in Single/Multiple CPU/GPU Computing Systems:
Application to Composite Process Flow Modeling 144

B-3 PROBABILISTIC ANALYSIS OF PROPERTY UNCERTAINTIES USING RESIN INFUSION FLOW MODELING AND SIMULATIONS 286
Preform and Resin property uncertainties, role, and their effect in liquid composite process flow modeling..286

Statistical Analysis of Uncertainties in Deterministic Computational Modeling - Application to Composite
Process Resin Infusion Flow Modeling 301

C. EDUCATIONAL ACTIVITY AND STUDENT SUPPORT 317

D. COMPUTATIONAL AND VISUALIZATION HARDWARE / SOFTWARE 320

Technical Section

Technical Objectives

Computational modeling and simulations involving STEM (science, technology, engineering and
mathematics) disciplines are highly interdisciplinary growing out of complex, challenging, multi-
domain, multi-component and data intensive application needs of several disciplines and the
need for high end computing hardware and software, algorithms and information driven
technologies. The research efforts in this project focused on the synergistic coupling of:

A. Research relevant to Navy/DOD in computational sciences

B. Computational Simulation, Visualization and Enabling Technologies

C. Student support towards development of next generation workforce

D. Associated support of computational and visualization hardware/software needs

A. Research Relevant to Navy/DOD in Computational Sciences

The Navy/DOD relevant research activities emphasize on the computational science research
with a focus on a paradigm for computer assisted material design and validation for material
systems that include metals, polymers and composites.

New material design developments and interface between different constituent materials can be
understood by studying the fimdamental interactions that exist across the fimctional material
element constituents. Such ftmdamental understanding can be enabled by materials design
through modeling and simulation of materials and material interfaces envisioned in multi-
functional and hybrid material systems. The active, optical, biological, structural, and/or
electronic simulations of different materials are required to achieve successful scientific
breakthroughs in the development and design of new class of material systems. These modeling,
simulation and visualization techniques are critical for the specific understanding of the interface
and interactions between the organic and inorganic material systems, in particular the complex
multi-length and temporal scale material and multi-species interactions that will enable and
optimize the development, processing, fabrication and scaling of the heterogeneous material
systems. Physical, computational modeling and simulations are still lagging for such
heterogeneous, multi-scale (length and time), multi-component interface material systems and
formed the research focus of this project.

The proposed relevant research activities under this umbrella are defined and categorized under
these focus areas. They are:

A-1: Computational Multi-Scale Science and Mechanics for Hybrid Light Weight Polymeric
Composite Structures

A-2: Computational Multi-scale Deformation Behavior in Metallic Material Systems

B. Computational Simulation. Visualization and Enabline Technologies

Several enabling technologies, their research development and availability are critical to the
success of the research and education activities in computational modeling and high performance
computing in advanced materials processing and synthesis and design. Toward this end, the
proposed efforts involve the development of an expanded computational simulation and enabling
technology and the research in the associated enabling technology areas including applications of
new high performance computing paradigms for physics based modeling and simulations.

C. Educational Activity and Student Support

North Carolina A & T State University (NCAT) is a land grant, historically black college and
university (HBCU) with the graduate Masters Computational Science and Engineering (CSE)
program established in 2005 and Ph.D. program in CSE established in 2010. NCAT has also now
established the graduate programs (MS and Ph.D.) in nanoengineering. Research initiated and
established through the ONR award provided the foundation for this establishment of the new
nanoengineering graduate program and paved the way for NCAT to lead such efforts in this
arena. NCAT is the first HBCU with a graduate master's and doctoral program in
nanoengineering. The educational activities of the proposed efforts were instrumental in
supporting the educational infrastructure requirements of the current Master's and Ph.D.
programs in nanoengineering and CSE. The educational activity funds of the project provided
financial fellowships and assistantships to the Ph.D. and Master's students in the area of
computational mechanics, nanomechanics, material sciences, and enabling technologies. This is
enabling the education and training of future workforce (esp. underrepresented minorities) in
these critical technology areas. In addition, North Carolina A&T State University has initiated a
new graduate program in Nanoengineering with computational nanoengineering as one of the
focus areas. The research areas related to computational nanomechanics, multi-scale modeling
and nanoengineered materials leveraged and enabled through the ONR funding benefited the
students of this program and leveraged additional opportunities firom this new graduate program.

D. Computational and Visualization Hardware / Software

Computational and visualization hardware/software resources are critical components of
computational modeling research. The project funding was instrumental in supporting the
associated software and system upgrades benefiting the research and educational needs of the

students, faculty and the research focus. In addition, the project funding was instrumental in the
award of a NSF major research instrumentation award to acquire a multi-processor SUN Blade
system that is currently under installation. ONR project funds in part were also used to support
the acquisition of a new multi-processor Cray XC-30 system that is now providing the hardware
needs for computational nanoengineering at North Carolina A&T State University.

Techmcal Approach^ _ ^ IMHBHppI-.. ^ J

All the research and educational developments and investigations performed under this grant
award targeted towards advancing the state of the art in the computational science and modeling
approaches for the class of problems and applications with multiple length and time scales and
that would require bridging across the different scales. The exploratory research developments
provided and enhanced the understanding of computational modeling and simulation
technologies towards a material by design paradigm for naval material developments, systems,
and applications.

Based on the above research, education, technology focus, specific research investigations were
initiated and conducted during the project funding period. Brief details of these research
investigations during the project period and technical approaches are presented here. Further
technical discussions are reported in the section on "Detailed Technical Discussions". All these
research investigations have resulted and are resulting in peer-reviewed publications, post-
doctoral research training, graduate student education and graduation through thesis and doctoral
dissertations associated with these research investigations.

A-1: Computational material science and mechanics of hybrid and light weight polymeric
composite structures

Research activities and the associated technical approach in the area A-1 conducted during the
project period focused on:

• Molecular dynamics modeling of carbon nano tube (CNT) - epoxy composites.

• Modeling and experimental investigation on the effect of Intelaminar Nanofiber layers on
the deformation behavior.

A-1-1: Atomistic Modeling in Polvmer Nanocomposite Systems - Applications to Mechanics of
Multi-Scale Materials

Hybrid and nano composites are formed with material phases at varying length scales, and
include nano material constituents. The behavior of these composites is influenced by the
material interactions during processing, and by the damages/defects in the associated constituent
nano materials. Low length scale modeling based on the atomistic, molecular structures provides
an insight into the molecular level interactions that exist, and their influence on the associated
composite properties. Such modeling can also provide predictive properties and an understanding

of the atomistic level behaviour. The project efforts focused on the role of atomistic modelling
and simulations vv'ith a focus on applications to a hierarchical nanoengineered composite material
systems consisting of carbon nanotube epoxy nanocomposites.

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar Nanofiber Layers
on the Delamination Behavior in an Epoxv Fiber Glass Composite

This work focused on the addition of electrospun nano fiber interface layers between the
traditional composite laminates and its effect on the delamination characteristics in an epoxy-
fiber glass composite system. Electrospun glass nano fiber layers formed with TEOS (Tetra
Ethyl Ortho Silicate) sol gel system are used as interface layers. Delamination characteristics of
the composite with and without electrospun fiber interface layers are studied using double
cantilever beam (DCB) tests. The experimental characterization showed that addition of nano
fiber layers provided consistent improvements in the Mode-I fracture toughness values. Finite
element modeling of the crack growth and delamination failure with and without the nano fiber
layers are studied and compared. The Mode-I firacture toughness values from the finite element
modeling are compared with the experimental data.

A-2 Computational multi-scale deformation behavior in metallic material systems

Research activities and technical approach in this area during the project period focused on the
deformation behavior of nanoscale material systems with applications to tensile, flexural, and
crack propagation.

A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation in metallic
systems

Nanomechanics is an evolving field that investigates the mechanical properties, deformation
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level,
principles of mechanics are employed in conjunction with interatomic potentials, molecular
forces and molecular dynamics. This work focused on the tensile and flexural deformation of
Nickel nanowires; and dynamic crack propagation in nanoscale Nickel and Nickel-Aluminum
bimetal interface.

A-2-1 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack Propagation in
Ni-Al Bilayer Composite

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction
of interfaces and exhibit strengths much higher than that of bulk materials composing the
structures. This strengthening has been attributed to the presence of interfaces between materials

that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act
as barriers to propagating dislocations. This work focused on the influence of semi-coherent Ni
(nickel) - Al (aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer
composite under tensile and cyclic loading conditions analyzed through computational modeling.

B: Computational enabling technologies

The specific research activity and technical approach in area B are:

B-1 Multi-Scale Simulation Investigations of Nanofiber Resin Interactions using Lattice
Boltzmann Equations and Finite Volume Methods

Multi-scale modeling approaches are required to accurately capture the disparate length scale
effects in various engineering problems. Preliminary work in this area focused on the coupled
Lattice Botlzmann and Navier Stokes modeling for flow problems in collaboration with
University of Alabama at Birmingham. Further developments in these concurrent coupled
modeling developments are needed. The present efforts are geared towards applications in
understanding the nano fiber, nano tube resin flow interactions in composites material
processing. Due the low length scale size of nano fibers in comparison to the resin flow domain,
low length scale methods in the vicinity of the nanofiber flow region and correlation with the
macroscopic flow field. The present research investigations and modeling investigations
comparing the Lattice Boltzmaim and Navier Stokes approaches that are in progress are
presented.

B-2 Physics Based Modeling and Simulation on Graphical Processing Units (GPUs) - Porous
Media Flow in Liquid Composite Molding

High performance computing architectures are evolving over the years with the Graphical
Processing Units (GPU) are providing superior performances for computationally intensive
problems. Results from the continued investigations are presented.

B-3 Probabilistic Analysis of Property Uncertainties using Resin Infiision Flow Modeling and
Simulations

Physics based flow modeling provides an effective way to simulate the resin infiision process in
liquid composite molding processes for polymer composite structures. These are effective to
provide optimal injection time and locations for given process parameters of resin viscosity and
preform permeability prior to resin gelation. However, there could be significant variations in
these two parameters during actual manufacturing due to differences in the resin batches, mixes,

temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for
permeability. Research to understand the influence of uncertainties in these parameters on the
resin infusion time was initiated via a probabilistic modeling methodology using resin flow
modeling and statistical analysis.

All these research investigations have resulted and are resulting in peer-reviewed publications,
post-doctoral research training, graduate student education, continuing graduate work and
graduation.

10

Technical Accomplishm

New material design developments require a fundamental understanding through computational
modeling of materials, interfaces and associated mechanics. Project efforts demonstrated the
effectiveness of computational modeling in material processing, synthesis and design via:
Molecular Dynamics modeling (MD) of carbon vacancy defects as a potential cause to reduce
modulus of SWNCT, and SWCNT-epoxy composites; Molecular Dynamics modeling of
deformation and Ni-Al bimetal interface for insight on nanoscale fracture; Lattice Boltzmaim and
Finite Volume Method for coupled meso- macro- flow analysis; Graphical processing unit
(GPU) as a computing platform for composite process flow modeling; Non-deterministic
probabilistic based methods to understand the influence of processing parameters based on
deterministic models.

A summary of the research and technical accomplishments and results obtained during the
project period in the various research investigations are presented next.

A-1: Computational material science and mechanics of hybrid and light weight
polymeric composite structures

Research activities and the associated technical approach in the area A-1 conducted during the
project period focused on:

• Molecular dynamics modeling of carbon nano tube (CNT) - epoxy composites.

• Modeling and experimental investigation on the effect of Intelaminar Nanofiber layers on
the deformation behavior.

A-1-1: Atomistic Modeling in Polymer Nanocomposite Systems - Applications
to Mechanics of Multi-Scale Materials

Computational techniques such as molecular dynamics (MD) simulations have emerged as an
alternative to the traditional experimental and theoretical methods of estimating mechanical
properties of the Epoxy - Carbon Nanotube composite systems. However, differences have been
observed between results obtained from experiments and those obtained from MD simulations
with the experimental results being lower. The effect of carbon vacancy defects in the single wall
carbon natotube (SWCNT) on the Young's modulus of the nano tubes as well as their EPON 862-

11

DETDA-SWCNT composite evaluated through molecular dynamics simulations performed with
Accelrys and Materials Studio were focused in the present work. Since their discovery, Carbon
nanotubes (CNT) have gained significant attention because of their superior chemical,
mechanical and thermo-physical properties. Inclusion of CNTs in polymer matrices have shown
significant improvement of properties compared with the properties of the parent polymers,
however, defects in these CNTs have also been observed to have detrimental effects on the
mechanical properties of the composites.

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar
Nanofiber Layers on the Delamination Behavior in an Epoxy Fiber Glass
Composite

Delamination is one of the important failure mechanisms in composite materials. Several
methods such as stitching of fiber plies, self-healing polymer materials, and interface
reinforcements have been developed, investigated and employed over the years to improve the
delamination characteristics. The usage of interface material layers (in particular, sub-micron and
nano level materials) has also been recently investigated. This study focused on the addition of
electrospun nano fiber interface layers between the traditional composite laminates and its effect
on the delamination characteristics in an epoxy-fiber glass composite system. Electrospun glass
nano fiber layers formed with TEOS (Tetra Ethyl Ortho Silicate) sol gel system are used as
interface layers. Delamination characteristics of the composite with and without electrospun fiber
interface layers are studied using double cantilever beam (DCB) tests. The experimental
characterization showed that addition of nano fiber layers provided consistent improvements in
the Mode-I fracture toughness values. Finite element modeling of the crack growth and
delamination failure with and without the nano fiber layers are studied and compared. The
Mode-I fracture toughness values from the finite element modeling are compared with the
experimental data.

A-2 Computational multi-scale deformation behavior in metallic material systems

Research activities and technical approach in this area during the project period focused on the
deformation behavior of nanoscale material systems with applications to tensile, flexural, and
crack propagation.

12

A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation
in metallic systems

Nanomechanics is an evolving field that investigates the mechanical properties, deformation
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level,
principles of mechanics are employed in conjunction with interatomic potentials, molecular
forces and molecular dynamics. This work focused on the tensile and flexural deformation of
Nickel nanowires; and dynamic crack propagation in nanoscale Nickel and Nickel-Aluminum
bimetal interface.

The tensile deformation behavior analysis indicates that Young's Modulus was independent of
the cross sectional area of the nanowire, and the strain rate. The flexural deformation and
vibration behavior indicates that the frequency of the vibrations as computed from time
displacement deformation behavior of the molecular configurations of the Nickel nanowire
beams are independent of the magnitude of external loading, and is consistent with the classical
beam theory.

The dynamic crack propagation behavior in a Nickel single crystal and a Nickel-Aluminum
bimetal interface are investigated. The propagation mechanisms and fracture behavior in Ni are
compared with such behavior in Ni-Al nanoscale bimetallic layer that initiates and propagates
from Ni towards the Ni-Al bimetal interface. Our results for Ni show an initial brittle crack
propagation followed by a roughening of the crack surfaces at one-third of the Rayleigh wave
speed. In Ni-Al, the crack surfaces initially grow brittle. Two regimes of crack propagation
velocities were observed in this case with crack getting decelerated as it nears the interface.
Further dynamic analysis of the crack propagation indicated a cease in the crack propagation in
Ni due to a brittle to ductile transition. In Ni-Al bimetal interface system, as the crack approaches
the interface, a process zone representing local disorder at the crack tip was observed to start
growing and interacting with interfacial defects that eventually results in a blunting of the crack
tip.

A-2-2 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack
Propagation in Ni-Al Bilayer Composite

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction
of interfaces and exhibit strengths much higher than that of bulk materials composing the
structures. This strengthening has been attributed to the presence of interfaces between materials
that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act
as barriers to propagating dislocations. This paper presents a review of two major factors that
influence the properties and behavior of the NMMCs: Interface structure,

13

Strengthening/Deformation mechanisms. The influence of semi-coherent Ni (nickel) - Al
(aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer composite under
tensile and cyclic loading conditions analyzed through computational modeling is discussed.
Results for nanoscale Ni-Al bilayer composite showed initial brittle crack propagation with
planar cleavage of atoms followed by crack surfaces getting roughened when crack propagation
speed is about one-third of Rayleigh wave speed. In case of Mode-I tensile cyclic loading, crack
was found to propagate either by fatigue cleavage of the atoms or by void nucleation in the
regions near the crack tip, depending on the value of maximum strain applied. In Ni-Al bilayer
composite studied, as crack approached the interface, dislocations start emanating from the
interfacial layer. The creation of voids was found to slow down crack growth in both the Ni and
Ni-Al at higher maximum applied strain during cyclic loading. Plastic deformation was found to
dominate crack propagation during tensile loading that resulted in a slower crack growth than
cyclic loading. In all cases, presence of semi-coherent interface in the nanoscale Ni-Al bilayer
composite was found to prohibit crack from propagating beyond the interface.

B-1 Multi-Scale Simulation Investigations of Nanofiber Resin Interactions using
Lattice Boltzmann Equations and Finite Volume Methods

The orientation/distribution of carbon nanotube (CNT) and other nanofibers in polymer matrix,
one of main factors in manufacturing high-performance multifunctional composites, is an
important aspect to be considered during the development of new CNT composites with
enhanced mechanical, electrical and thermal properties. However, the disparate length scales
involved and mechanical properties of nanotube and rheological properties of polymer matrix
around CNT and nanofibers hinder researchers from elucidating the problem via computational
modeling. Understanding this problem requires a multi-scale computational approach and the
associated enabling technologies. Different computational solvers for each of these scales,
bridging techniques between the solvers, and a representative model of a carbon
nanotube/nanofiber are needed for the simulation of this class of multi-scale and multi-
disciplinary problems. The activities, accomplishments and results during the past year focused
on the 1) the coupling of a macro-scale solver, HYB3D, and a meso-scale solver. Regularized
Lattice Boltzmann (LB) equation solver, for computational fluid dynamics problems.

B-2 Physics Based Modeling and Simulation on Graphical Processing Units
(GPUs) - Porous Media Flow in Liquid Composite Molding

The present year efforts examined the performance of graphics hardware when used as a co-
processor within the context of a real-world application. The real-world application is Resin

14

Flow Infusion using the Finite Element Method (FEM) as provided by pre-existing Liquid
Composite Molding (LCM) software. As illustrated in this study, the Graphics Processing Unit
(GPU) used as a co-processor provides a definite boost in performance. However, the inherent
differences in the GPU and CPU paradigms necessitate a different software structure.

B-3 Probabilistic Analysis of Property Uncertainties using Resin Infusion Flow
Modeling and Simulations

Physics based flow modeling provides an effective way to simulate the resin infiision process in
liquid composite molding processes for polymer composite structures. These are effective to
provide optimal injection time and locations for given process parameters of resin viscosity and
preform permeability prior to resin gelation. However, there could be significant variations in
these two parameters during actual manufacturing due to differences in the resin batches, mixes,
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for
permeability. Research to understand the influence of uncertainties in these parameters on the
resin infiision time was initiated via a probabilistic modeling methodology using resin flow
modeling and statistical analysis.

In addition to the research progress, the present project efforts in the establishment of the MS
and Ph.D. program in nanoengineering and in developing the computational nanoengineering
focus areas. The project initiatives were instrumental in providing the leverage for new research
projects in the areas of multi-scale modeling of cementitious materials, high performance
computational modeling of bio-nano interfaces. These would not have been possible without the
enabling support provided by this research funding. The project efforts are benefiting the
graduate student research education and training for the students in CSE and the nanoengineering
programs. Several of these students participated in the research activities for the past year and
continue to participate in the research activities. The research areas related to computational
nanomechanics, multi-scale modeling and nanoengineered materials leveraged and enabled
through the present funding is benefiting the students of this program and in facilitating new
research opportunities in the computational nanoengineering, and attracting qualified minorities
to the research areas of computational nanoengineering.

15

Detailed Technical Report

Detailed technical report of the methodology, results and discussions are presented next. Technical
discussions are organized under the same categories and headings as listed in the "Technical Approach"
section. In addition, the accomplishments from the educational activity and student support and
computational hardware/software are also presented.

A-1: Computational material science and mechanics of hybrid and light weight
polymeric composite structures

A-1-1: Atomistic Modeling in Polymer Nanocomposite Systems - Applications
to Mechanics of Multi-Scale Materials

Computational Study of the Effect of Carbon Vacancy Defects on the Young's Modulus of
(6,6) Single Wail Carbon Nanotube

Authors: E. Fefey, R. Mohan, A. Kelkar, North Carolina A&T State University

Published Journal Article: Materials Science and Engineering: B, Vol. 176, Issue 9, Pages 693-

772, 2077fdoi;10.1016/j.mseb.2011.02.019)

Abstract

Computational techniques such as molecular dynamics (MD) simulations have emerged as an
alternative to the traditional experimental and theoretical methods of estimating mechanical
properties of single wall carbon nanotubes (SWCNTs) and polymer nanocomposites containing
SWCNTs. Most MD simulations are based on a perfect molecular material structure of the
SWCNT. The presence of vacancy defects in SWCNTs could lead to deviations from this perfect
structure thus affecting the predicted properties. The present study investigated the effect of
carbon vacancy defects in the molecular structure of SWCNT on the Young's modulus of the
SWCNT using MD simulations performed via Accelrys and Materials Studio. The effect of the
position of the defects in the nanotube ring and the effect of the number of defects on the
Young's modulus are studied. The studies indicate that for an enclosed defect with the same

16

shape in a SWCNT structure, its position did not cause any change in the Young's modulus.
However, as the number of defects increased, the predicted Young's modulus was found to
decrease. For a 10 ring (6, 6) SWCNT, six vacancy defects (corresponding to a defect percentage
of 2.5%) reduced the Young's modulus by 13.7%. These results indicate that presence of carbon
vacancy defects are one potential cause for the reduction and lower Young's modulus of
SWCNT, and subsequently lower Young's Modulus obtained experimentally in SWCNT
dispersed epoxy-SWCNT nanocomposites cited in the literature.

1. Introduction

Since their discovery in 1991 [1], single wall carbon nanotubes (SWCNTs) have gained
significant attention because of their superior chemical, mechanical and thermo-physical
properties. For example, in the field of polymer nanocomposites, inclusion of SWCNTs into
polymer matrices have been reported to result in significant improvement of properties compared
to the properties of the parent polymers [2, 3]. The mechanical properties of SWCNTs and that
of polymer nanocomposites containing SWCNTs have been studied through theoretical,
experimental and computational analysis [4-7]. Results reported in the literature have indicated
that mechanical properties obtained from experiments tend to be lower than those obtained from
the computational analysis [8]. Several reasons have been assigned for this disparity including
the fact that the experimental macroscopic coupons have SWCNTs dispersed in various
orientations, while the computational models usually have the SWCNTs uni-directionally
aligned. Another cause for this disparity is the fact that experimental processes could introduce
defects into the SWCNTs, while computational models are based on a perfect SWCNT
molecular material structure. Carbon vacancy defects in the molecular structure have been
known to cause changes in the properties of CNTs [9-12]. Chemically, in some cases, these
defects have been reported to enhance the affinity of the CNTs at the defective site making them
most suitable as Platinum carrier electrodes in fuel cells [13]. However, these defects have been
shown to have detrimental effects on their mechanical properties [9-11].

The present study investigates the effect of carbon vacancy defects on the Young's modulus of
SWCNTs through Molecular Dynamics (MD) simulations. MD simulations provide in detail the
dynamic individual particle motions and structure developments as a function of time [14] and
therefore serve as a great tool to study the properties of a material system. The CNT investigated
in this work is the (6, 6) single wall carbon nanotube (SWCNT).

17

2. Creation of the Atomistic Model Configurations

2.1 Creation and Simulation of Pure SWCNT Atomistic Model Configuration

All molecular models were created in Materials Studio and molecular modeling analysis
simulations were conducted using Discover module by Accelrys Inc. A unit cell of the (6, 6)
SWCNT was created in Materials Studio followed by the generation of a super cell build with 10
SWCNT unit cells. The resulting carbon nanotube had a length of 23.4 A, diameter of 8.14 A,
and a bond length of 1.42 A. Figure 1 shows the unit cell and super cell generated and modeled
with Materials Studio. The potential energy of the models is characterized by the COMPASS
force field [15] with the non-bond energies characterized by the Vander Walls and Coulomb's
interactions.

^t^^ft^^ 5*6

^)^^tL~^' 4 -«Mfe

(a) (b)

Figure 1: (a) Unit cell, (b) Supercell of the SWCNT

All angles of the cell were made equal to 90 degrees to ensure a rectangular box. The super cell
molecular structure was minimized to obtain the most stable energy configuration. A cascade of
the steepest descent minimization method and the Fletcher-Reeves method were used for this
minimization. A typical potential energy profile during the energy minimization is shown in
Figure 2.

i6000r

950

step Number

1950

Figure 2: Potential energy profile during minimization of SWCNT

The required initial density of the cell material configuration was obtained by varying the
volume of the cell. This was done by varying the lattice dimensions of the cell. Density is
calculated from the total atomic material mass of the constituents in a simulation cell divided by
the volume of the cell. NPT statistical ensemble which keeps the number of molecules, pressure
and temperature constant but allows the volume of the cell to vary was used. The density
therefore changes over the duration of the MD simulation and the reported density is the
averaged density over the duration of the simulation.

As expected with a constant mass of the SWCNT defined by the super cell structure, as the
volume was decreased, the density of the bounding cell increased and vice versa. However, it
was observed that below certain cut-off dimensions of the bounding cell, energy minimization
resulted in distortion of the nanotube structure. This made it impossible to obtain the targeted
physical density of 1.9 g/cm^ (SWCNT physical density), since this resulted in distortion of the
nanotube structure. The distorted SWCNT structures obtained after the fiill minimization
convergence are not however representative of the physical configuration of the SWCNT. Figure
3 shows examples of distorted SWCNT nanotube structures obtained after full energy
minimization convergence.

19

9§m

Figure 3: Distorted SWCNT after minimization

In order to avoid these unpliysical distortions seen during the energy minimization, mechanical
property predictions for the Young's modulus was determined at several densities that had
undistorted minimized structures. The predicted Young's Modulus values from these different
densities were then extrapolated to obtain the Young's Modulus at the physical density of 1.9
g/cm . MD simulation analyses were conducted at a temperature of 298 K and a pressure of 1
atmosphere for 50 ps (50,000 fs) with a time step of 1 fs. All simulation analyses employed NPT
ensemble with the Anderson temperature control method [16, 17] and the Berendsen pressure
control method [15]. Trajectories were saved at every 5,000 steps resulting in 10 frames over the
entire time duration of the simulation. These 10 molecular trajectory frames were used in the
computational analysis for the predicted Young's modulus. Young's modulus as predicted and

obtained from Accelerys analysis computations was calculated from the Lame constants ^ and

^ as given by Equation 1.

E = ju
X + n

(1)

A 6 ^6 matrix of elastic constants generated by the Accelrys analysis computations was
analyzed to obtain the modulus in various directional orientations.

Table 1 lists the dimensions of the nanotubes used with "a", "b" and "c" being the dimensional
length of the bounding cell in the "x", "y" and "z" axis respectively.

The lattice parameters for the configuration SWCNT 1 represent the threshold below which
further minimization of the cell resulted in an unphysical distortion of the nanotube as discussed
earlier.

20

Table 1: Lattice parameters of SWCNT cell structures used to investigate the Young's Modulus

Lattice

parameters[A] SWCNTl
SWCNT2 SWCNT3 SWCNT4

11.483 12.5 13.5 14.5

11.483 12.5 13.5 14.5

25.5951 25.5951 25.5951 25.5951

2.2 Creation and Simulation of Defective SWCNT Atomistic Models

The defective single walled carbon nanotubes (DSWCNT) with vacancy defects were created in
the same way as the pure SWCNT. The vacancy defects in the SWCNT structure were
introduced by removing some carbon atoms in the "z" dimensional axis of the tube. As
mentioned earlier in section 1, these vacancies of carbon atoms are sometimes advantageous
from the chemical point of view, because the affinity of the structure is increased at these vacant
sites. However, mechanically these defects make the structure weaker and results in a decrease of
the mechanical properties.

Two types of investigations were conducted on the effect of carbon vacancy defects on the
predicted Young's Modulus of SWCNT. The first investigation is to determine the effect of the
position of the carbon vacancy defect on the Young's modulus of the nanotube. This was
modeled by moving the vacancy defect around the lattice length of the nanotube in the "z"
dimension. The second investigation is to find the effect of the number of vacancy defects on the
Young's modulus. The number of defects incorporated into the tube was altered. Young's
modulus was therefore investigated for different number of defects in the tube. As with the pure
SWCNT, the Young's modulus was determined at different densities and extrapolated to the
required physical SWCNT density of 1.9 g/cm^ to avoid the unphysical distortions during energy
minimization as discussed earlier. The lattice parameters used in the SWCNT model
configurations with carbon vacancy defects were the same as in the pure case and are as listed in
Table 1. A similar procedure as discussed earlier was employed for the creation of the molecular
model with the carbon vacancy defects. A unit cell was created followed with a super cell with
10 SWCNT units generated with all angles equal to 90 degrees. Vacancy defects in the SWCNT
structure were formed by removing some carbon atoms from the rings. The structure with carbon
vacancy defects was then minimized. The energy minimization was monitored to avoid cell
dimension configurations that would lead to unphysical distortion of the SWCNT structures. MD
simulation analyses were conducted at a temperature of 298 K for 50 ps (50,000 fs) with a time-
step of 1 fs. 10 trajectories of the molecular configurations during the dynamic analysis were

21

saved and used for the analysis run to estimate the predicted Young's modulus of SWCNT with
various vacancy defects.

3 Results and Discussions

The predicted Young's modulus from various MD simulations with the carbon vacancy defects
are compared with those for a pure, non-defective SWCNT. The findings and inferences from the
several simulation analyses are discussed next.

3.1 Position of the Defect

The carbon vacancy defect was moved along the "z" axis dimension of the SWCNT to
investigate the effect of the position of the vacancy defect within the SWCNT molecular
structure on the Young's modulus. Due to the symmetrical nature of the SWCNT, a carbon
vacancy defect in the second ring would be equivalent to the carbon vacancy defect in the eighth
ring. In the same regard, defects in the third and seventh ring are equivalent, so are defects in the
fourth and sixth. For this reason, the defects were moved only from the second ring to the fifth
ring. Any fiirther than this will just be duplication for the SWCNT length considered in the
present study. The defect used in this work consisted of removing adjacent vertical carbon atoms
in a particular ring as shown in Figure 4.

Figure 4: SWCNT with two carbon atoms removed

Removal of one carbon atom from an enclosed ring results in the breaking of three C-C bonds.
The carbon atoms removed and the bonds broken are highlighted in Figure 4. Removal of two
carbon atoms therefore results in the breaking of six C-C bonds. Carbon atoms were not removed
from the first or the ninth rings because that would have resulted in the breaking of fewer C-C
bonds since the first and ninth rings were the boundary rings, and will therefore not augur well
for accurate comparisons. It must be noted however that the results are not expected to be the
same if the carbon atoms were removed horizontally since this would result in a different shape
of the defect. The movement of the carbon vacancy defect along the "z" dimension of the tube is
schematically shown in Figure 5.

22

Table 2 shows the Young's modulus at different positions on the SWCNT for adjacent vertical
carbon atoms removed and Table 3 shows the Young's modulus at different positions of the
SWCN T for adjacent horizontal atoms removed.

Table 2: Effect of the position of the defect on Young's Modulus (adjacent vertical atoms
removed)

Position of defect Young's Modulus [GPa]

Second ring (Figure 5a) 704.4

Third ring (Figure 5b) 704.2

Fourth ring (Figure 5c) 704.2

Fifth ring (Figure 5d) 704.1

23

.Wti^i^&Ar.-^--:

(b)

(c) (d)

(e) (f)

(g)

Figure 5: Various positions of adjacent defects in the SWCNT: (a) Vertical defect in second
ring, (b) Vertical defect in third ring, (c) Vertical defect in fourth ring, (d) Vertical
defect in fifth ring, (e) Horizontal defect in the second and third rings, (f) Horizontal
defects in the third and fourth rings, (g) Horizontal defects in the fourth and fifth rings

24

Table 3: Effect of the position of the defect on Young's Modulus (adjacent horizontal atoms
 removed)

Position of defect Young's Modulus [GPa]

Second and third rings (Figure 5e) 735.4

Third and fourth rings (Figure 51) 735.6

Fourth and fifth rings (Figure 5g) 735.6

From Table 2 and 3 it is clear that for a defect with the same shape, its position in the SWCNT
had no effect on the Young's modulus. This can be attributed to the fact that, for the same shape
and size of vacancy defect, regardless of its position, the same type of bonds are broken and
therefore the weaknesses introduced are equivalent. The results were however different when the
shape of the defect was changed and the number of defects kept the same. This is evident from
the fact that the average Young's modulus for the SWCNT with two adjacent vertical defects
(Table 2) is 704.2 GPa while the average Young's modulus for the SWCNT with two adjacent
horizontal defects (Table 3) is 735.5 GPa. The results from the simulations indicate that moving
the defect along the "z" dimension of the tube therefore has no effect on the Young's modulus
for the defects of the same shape, and the removed carbon atoms are enclosed.

3.2 Number of Defects

The effect of the number of defects on the Young's modulus was also studied. Simulation runs
were conducted for nanotubes with no defects, two defects, four defects, six defects and eight
defects. Fig 6 shows the configuration of these various defects in the molecular structure of
SWCNT. All these were taken to be adjacent vertical defects.

As mentioned in section 2.1, Young's modulus was determined at densities for which the lattice
parameters did not result in distortion of the SWCNT during minimization. These were then
extrapolated to the actual nanotube density of 1.9 g/cm to obtain the Young's modulus at this
physical density. In obtaining the relationship between the density and Young's modulus of the
nanotube, the point (0, 0) was added to the simulated data points in figures 7 thru 11. This is due
to the fact that without a SWCNT, the density of the cell is zero. Figures 7 through 11 show the
simulated densities and the corresponding Young's modulus obtained for the cases of zero
defect, two defects, four defects, six defects and eight defects respectively. The extrapolated
Young's modulus for the density of 1.9 g/cm^ is also shown in all cases and the corresponding
values are presented in Table 4.

25

(a)

(b)

(c)

(d)

■.JI'*'M'*W*'l.'*'>'*"M'*"lt'*'B'*l''*

i1l>imi*iiaiii)iifliill>imi>ig»i»jiii<h#i1>'jS'd>iiiyiii|>iii||»

(e)

Figure 6: Various numbers of defects in the SWCNT: (a) No defect, (b) 2 defects, (c) 4 defects,
(d) 6 defects and (e) 8 defects

26

800

0.2 0.4 0.6 0.8 1 1.2
Density [g/cc]

1.4 1.6 1.8

Figure 7: Young's modulus of SWCNT with no defect (pure nanotube)

800

0.2 0.4 0.6 0.8 1 1.2
Density [g/cc]

1.4 1.6 1.8

Figure 8: Young's modulus of SWCNT with 2 carbon vacancy defects

27

800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Density [g/cc]

Figure 9: Young's modulus of SWCNT with 4 carbon vacancy defects

800

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Density [g/cc]

Figure 10: Young's modulus of SWCNT with 6 carbon vacancy defects

28

800

0.2 0.4 0.6 0.8 1 1.2 1.4

Density [g/cc]

1.6 1.8

Figure 11: Young's modulus of SWCNT with 8 carbon vacancy defects

Table 4: Effect of number of defects on the extrapolated Young's modulus at the physical
 density of 1.9 g/cm^

Number of defects Young's Modulus [GPa]

0

2

4

6

8

768.7

705.4

676.1

663.4

662.9

The effect of the number of carbon vacancy defects in a SWCNT on the Young's modulus of the
SWCNT is shown in Figure 12.

It is clear from figure 12 that the Young's modulus of the defective nanotube (SWCNT)
decreases with increasing number of defects. This result conforms well to the reduction in
fracture toughness for larger defect radius reported in the literature [11]. This phenomenon
further supports the fact that defects in the SWCNT could be a potential cause of the disparity in
results obtained from experiments and molecular modeling simulations of polymer

29

nanocomposites containing CNTs. A noticeable observation from Figure 12 though is that, after
a certain number of defects (six in this case); there is no more noticeable reduction in the
Young's modulus. The variation of the defects percentage in the SWCNT and the corresponding

percentage reduction ia Young's modulus of the SWCNT is shown in Table 5.

780

640

2 4 6

Number of defects

10

Figure 12: Effect of number of defects in SWCNT on Young's modulus

Table 5: Variation of SWCNT percentage defects and Young's Modulus

% defects in SWCNT % reduction in Young's Modulus [GPa]

0.83

1.66

2.5

8.24

12.05

13.7

4. Summary

Experimental results obtained for the mechanical properties of SWCNTs and poljoner
nanocomposites containing SWCNTs have tended to be lower than the results obtained from MD
simulations. One potential cause for this disparity is the presence of molecular defects in the
SWCNTs.

30

In this work, the effect of carbon vacancy defects on the Young's modulus of a 10-unit (6, 6)
SWCNT was investigated using MD simulations. The defect in this work was made up of carbon
vacancies. This was achieved by removing adjacent vertical carbon atoms from the SWCNT
molecular ring. Two types of investigations were performed:

l.The effect of the position of the carbon vacancy defect, and

2.The effect of the number of the vacancy defects.

The SWCNT models were created and minimized. MD simulations were run for 50 ps with a
time step of 1 fs. Molecular trajectories were saved every 5000 steps and used for the evaluation
of the Young's modulus.

To study the effect of the position of the defect, the defect was moved along the "z" dimension
of the tube. The results indicated that the position of the defect did not cause any change in the
Young's modulus. The results varied by less than 1% (701-704 GPa) for the case where adjacent
vertical atoms were removed. However, the results were different when the shape of the defect
was changed by removing adjacent horizontal atoms (735.4-735.6 GPa). It must also be noted
that these defects are in enclosed rings, not on the boundary rings. This ensures that equal
numbers of C-C bonds are broken in all cases.

The effect of the number of carbon vacancy defects was investigated by varying the number of
defects incorporated into the SWCNT. Young's modulus was obtained for nanotubes with no
defect, two defects, four defects, six defects and eight defects. The analysis results clearly
indicate that as the number of defects increased, the Young's modulus decreased. Incorporation
of six defects (2.5% defects) reduced the SWCNT nanotube modulus by about 13% (from 767
GPa to 663 GPa). Furthermore, the analysis results indicate that increasing the number of defects
beyond six not to result in any further reduction of the Young's modulus.

References

[1] lijima S., Helical Microtubules of Graphitic Carbon, Letters to Nature, Volume 354
(56), (I99I) 56-58.

[2] Zhou Y. X., Wu P. X., Cheng Z. Y., Ingram J., Jeelani S., Improvement in electrical,
thermal and mechanical properties of epoxy by filling carbon nanotube, Express
Polymer Letters , Volume 2, Number I, (2008) 40-48.

[3] Demcyk B. G, Wang Y. M, Cumings J, Hetman M, Han W, Zettl A, Ritchie R, O.
Direct mechanical measurement of the tensile strength and elastic modulus of
multiwalled carbon nanotubes. Materials Science and Engineering A, Volume 334,
(2002)173-178.

31

[4] Ning H., Zen M., Cheng Y., Go Y., Hisao F., Toshiyuki H., The electrical properties
of polymer nanocomposites with carbon nanotube fillers, Nanotechnology, Volume
19,(2008)215701.

[5] Yue H., Elliot J., Molecular dynamics simulations of the elastic properties of
polymer/carbon nanotube composites, Computational Materials Science, Volume 39,
(2007)315-323.

[6] Zhu R., Pan E., Roy A. K., Molecular dynamics study of the stress-strain behavior of
carbon-nanotube reinforced EPON 862 composites. Materials Science and
Engineering A, Volume 447, (2007) 51-57.

[7] Gou J., Minaie B., Wang B., Liang Z., Zhang C, Computational and experimental
study of interfacial bonding of single-walled nanotube reinforced composites,
Computational Materials Science, Volume 31, (2004) 225-236.

[8] Komuves F., Prediction of mechanical properties of EPON 862 (DGEBF) cross-
linked with curing agent W (DEDTA) and (6, 6) SWCNT using MD simulations, PhD
Dissertation, Mechanical Engineering 2009.

[9] Li Z., Wang C. Y., Ke S. H., Yang W., First principles study for transport properties
of defective carbon nanotubes with oxygen adsorption. The European Physical
Journal B, Volume 69, (2009) 375-382.

[10] Mielke S. L., Troya D., Zhang S., Li J. L., Xiao S., Car R., Ruoff R. S., Schatz G. C,

Belytschko T., The role of vacancy defects and holes in the fracture of carbon
nanotube. Chemical Physics Letters, Volume 390, (2004) 413-420.

[11] Mielke L. S., Zhang S., Khare R., Troya D., Ruoff R. S., Schatz G. C, Belytschko
T., Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations.
Physical Review B, Volume 71, (2005) 115403.

[12] Chico L., Crespi V. L., Benedict L. X., Louie S. G., Cohen M. L., Pure carbon
nanoscale devices: nanotube heterojunctions. Physical Review Letters, Volume 76,
Number 6, (2006) 971-974.

[13] Park Y., Lahaye R. J., Lee Y., Adsorption ofPt on defective carbon nanotube walls: a
DFT approach. Computer Physics Communications, Volume 177, Issues 1-2, (2007)
46.

[14] Liu W.K., Karpov E. G., Zhang S., Park H. S., An introduction to computational
nanomechanics and materials. Computer Methods in Applied Mechanics and
Engineering, Volume 193, (2004) 1529-1578.

32

[15] Sun H., The COMPASS force field: parameterization and validation for
phosphazenes. Computational and Theoretical Polymer Science, Volume 8, Number
1/2, (1998) 229-246.

[16] Hu Y., Sinnott B. S., Constant temperature molecular dynamics simulations of
energetic particle-solid collisions: comparison of temperature control methods
Journal of Computational Physics, Volume 200, Issue 2, (2004) 251-266.

[17] Andersen C. H., Molecular dynamics simulations at constant pressure and/or
temperature. Journal of Chemical Physics, Volume 2, Number 4, (1980) 2384-2393.

33

Predictive Mechanical Properties of EPON 862 (DGEBF) cross-linked with Curing Agent
W (DETDA) and SWCNT using MD Simulations - Effect of Carbon Vacancy Defects

Authors: R. Mohan, E. Fefey, A. Kelkar, North CaroHna A&T State University

Published Referred AIAA Proceedings: 53'''^ AM A/
Dynamics, and Materials Conference, April 2012.
PubUshed Referred AIAA Proceedings: 53'^ AIAA/ASME/ASCE/AHS/ASC Structures, Structural

ABSTRACT

Molecular Dynamics (MD) simulations are a viable alternative to experimental methods to
obtain mechanical properties of EPON 862-DETDA-SWCNT composites. This paper
investigates the effect of SWCNT carbon vacancy defects on the Young's modulus of the EPON
862-DETDA-SWCNT composite using MD simulations performed via Accelrys. For a
composite with 7-12 weight% of SWCNT, 2 carbon vacancy defects in the SWCNT is found to
reduce the Young's modulus by 13-18%, while 4 carbon vacancy defect in the SWCNT reduced
the Young's modulus of the composite by 21-30%. This clearly indicates that carbon vacancy
defects are one potential cause for the disparity, and lower Young's modulus values of Epoxy-
SWCNT composites cited in the literature.

Introduction

The inclusion of nanomaterial constituents into polymeric resin systems has gained significant
attention because of the enhancement in mechanical and thermophysical properties that are
attained [1- 3]. Carbon nanotubes (CNTs), in particular have been reported to increase the
mechanical properties of its parent polymers significantly [4, 5]. The mechanical properties of
CNT-reinforced epoxy systems such as the EPON 862-DETDA-SWCNT composite system have
been studied through theoretical, experimental and computational analysis [6-9]. Experimental
mechanical properties obtained and cited in the literature are generally lower than the values
obtained from computafional analysis [10-12]. Some reasons for this disparity have been
attributed to the fact that experimental macroscopic coupons have CNTs dispersed in various
orientations, while the computational molecular models usually have the CNTs uni-directionally
aligned.

Computational molecular models are also normally small built with few cured epoxy molecular
structures. The high computational costs restrict the use of larger molecular cure network models
that could better represent the fiilly cured epoxy structure. Another reason for this disparity is the
fact that experimental processes could possibly introduce defects into the CNTs while

34

computational models are based on ideal CNT molecular configuration. As cited in the literature,
carbon vacancy defects in the CNT molecular structure have been known to cause changes in the
properties of CNTs [13-16]. A study of the effect of carbon vacancy defects on the Young's
modulus of the CNT has been presented in an earlier work by the present authors [17].
Chemically, these defects have been reported to enhance the affinity of the CNTs at the defective
site making them most suitable as Platinum carrier electrodes in fuel cells [18]. However, these
defects have been shown to have detrimental effects on the mechanical properties as cited in the
literature [10-12],

The present paper investigated the effect of carbon vacancy defects in the ideal CNT molecular
configuration on the fundamental mechanical properties of the CNT-epoxy nanocomposite
system through molecular dynamics simulations. The defects were in the form of loss of carbon
atoms in the ideal CNT structure creating carbon vacancy defects. The polymer nanocomposite
system used in the present work is the (6, 6) single walled carbon nanotube (SWCNT) and the
matrix system was diglycidylether of bisphenol F (EPON 862) cross linked with
diethyltoluenediamine (DETDA).

Methodology

All molecular models in this work were created in Materials Studio and molecular modeling
analysis simulations were conducted using Discover and Amorphous module from Accelrys Inc.
Materials Studio is a graphical user interface that allows construction of atomistic models and set
up the analysis required for characterization of these molecular models and prediction of
mechanical properties. MD simulations provide in detail the individual particle motions and
structure developments as a fixnction of time [19], and therefore serve as a great tool to study the
properties of a material system at the molecular/atomistic level.

Molecular Model of EPON 862-DETDA-SWCNT Composite

The recommended weight ratio of EPON 862 to DETDA for a fiiUy cured composite during
processing is 100:26.4 [10, 11]. Figure 1 shows the molecular structures of EPON 862 and
DETDA from Materials Studio.

(a) (b)

Figure 1. (a) EPON 862 and (b) DETDA molecular structures from Materials Studio

35

The molecular weight of EPON 862 is 312, and DETDA has a molecular weight of 178. Based
on this, the molecular ratio of the fiiUy cured composite was formulated to be 2 molecules of
EPON 862 linked with 1 molecule of DETDA, giving nearly the same recommended weight
ratio of 100:26.4 that is employed in actual processing for the cured epoxy molecular structure.
The fully cured composite molecular model was therefore constructed with 8 molecules of
EPON 862 and 4 molecules of DETDA.

0 0
/\ /\

0—CH: —HC CH: 0—CH:—HC CH;

EPON 862 (2 molecules)

+
I

CH,^

CHj

H:N^ J. NH:

■CH:-- ^-^ CH:

DETDA

.-CH,

OH

0 — CHj—HC CH

Figure 2. Cross-linking of 2 EPON-862 molecules with 1 DETDA molecule

The DETDA molecule has 2 amine (NH2) groups and the EPON-862 molecule has 2 epoxide
(CHCH2O) groups. Each of these amine groups in the DETDA can react with 2 epoxide groups
ofthe EPON-862 [9].

The cross linking process was initiated by bonding 2 epoxide groups from 2 different EPON-862
molecules with 1 ofthe amine groups. This formed a crosslink ofthe 2 EPON-862 molecules at
the resulting N-atom of the DETDA. This reaction is shown in Figure 2. This cross linking
process was repeated with different EPON-862 molecules for all the 4 DETDA molecules, so
each DETDA molecule cross linked 2 EPON-862 molecules.

36

At this stage, each of the 8 EPON-862 cross linked molecules had one un-bonded epoxy group
while each of the 4 DETDA molecules also had an un-bonded amine group. 4 of these epoxy
groups were bonded with the 4 free amine groups resulting in a ring of 8 molecules of EPON-
862 and 4 molecules of DETDA. Figure 3(a) shows a diagrammatic representation of the ring
while Figure 3(b) shows the actual ring from Materials Studio. A unit cell of the SWCNT is also
shown in Figure 3(c).

EPON 862(1) EPON 862

DETDA EPON 862 DETDA

EPON 862 EPON 862

DETDA EPON 862 DETDA

EPON 862 EPON 862

(a)

Figure 3. (a) Diagrammatic representation of fully cured (8:4) EPON 862 cross linked with
DETDA, (b) Fully cured (8:4) EPON 862 cross linked with DETDA from Materials studio, (c)

SWCNT unit cell

Three polymer nanocomposite molecular models with SWCNT weight percentages between 7%
and 12% were employed in the present investigations. The three molecular models of the

37

defective SWCNT (DSWCNT) and cured epoxy composite system used in the present study had
the following configurations and SWCNT weight percentages based on the cell dimensions of
the molecular models:

1. Molecular Model Configuration A: 3 unit cells of DSWCNT and 2 fiilly cured epoxy
matrix corresponding to the CNT weight percentage of 11.28-11.58%

2. Molecular Model Configuration B: 4 unit cells of DSWCNT and 3 fully cured epoxy
matrix corresponding to the CNT weight percentage of 10.34-10.49%

3. Molecular Model Configuration C: 4 unit cells of DSWCNT and 4 fully cured epoxy
matrix corresponding to the CNT weight percentage of 7.95-8.08%

The potential energy of the molecular models was characterized by the COMPASS force field
[20], with the non-bond energies characterized by the Vander Walls and Coulomb's interactions.
The dynamic analysis was performed using the NPT ensemble in conjunction with the Anderson
temperature control method [21, 22] and the Berendsen pressure control method [20].

The different molecular model configurations were minimized to obtain the lowest energy
configuration. A cascade of the steepest descent minimization method and the Fletcher-Reeves
method were used for the minimization. The minimized energy molecular models were
subsequently equilibrated with the NVT ensemble for 100 ps at 298 °K. A sample simulation
molecular cell is shown in Figure 4.

Figure 4. Simulation cell showing the CNT embedded in the fully cured epoxy matrix

38

Simulated annealing was used to mimic the curing cycle of EPON 862-DETDA-SWCNT
composite and to ensure that the final configuration had the lowest energy possible. A
characteristic of simulated annealing is lowering the temperature slowly in stages to allow
thermal equilibrium of the molecular configuration to be attained at each stage. At high
temperatures, molecules move freely, but as the temperature decreases, thermal mobility
decreases, and the molecules tend to align in a state of minimum energy as long as the
temperature is decreased slowly [23]. The molecular cell was heated to 498 °K, and the
temperature was dropped to 298 °K in steps of 10 °K using the NPT ensemble with a specified
pressure of 0.0001 GPa (1 atm). MD simulation analysis was conducted at each temperature
during the simulated annealing process for 200 ps (200,000 fs) with a time step of 1 fs. The final
molecular structure of each simulated annealing temperature step was used as the starting
structure of the next step. The molecular configuration density reported at each simulated
annealing temperature step was noted. All simulations employed NPT ensemble which keeps the
number of molecules, pressure and temperature constant, but allows the volume of the cell to
vary. The density therefore changes over the dynamic duration of the MD simulation and the
reported density is the averaged density over the dynamic duration of the simulation. At 298 °K,
an analysis of the elastic properties was performed by saving 10 trajectories and using them for
the predicted Young's Modulus. Young's modulus as predicted and obtained from Accelrys

analysis computations was calculated from the Lame constants ^ and ^ using Equation 1.

E = fi
3/1 + 2//

, ^ + /^ . (1)

A 6 x6 matrix of elastic constants generated via the Accelrys analysis computations was
analyzed to obtain the modulus in various directional orientations.

Defect Types and Defective SWCNT Composite Systems

The effect of two and four carbon vacancy defects in the SWCNT on the mechanical properties
of the EPON-SWCNT composite was studied. The vacancy defects in the SWCNT structure was
introduced by removing two adjacent vertical carbon atoms on one side of the nanotube.
Because of the short length of the nanotube in the present study, the four carbon vacancy defect
was obtained by the removal of two adjacent vertical carbon atoms on opposite sides of the
nanotube.

39

«;; .«eaa3s-'--s- ap*s-^ii>r' <"

Figure 5. (a) Simulation cell with CNT having 2 defects (b) Simulation cell with CNT having 4
defects (c) Zoomed CNT showing the 2 defects (d) Zoomed CNT showing the 4 defects (e) Side

view of the 2 defects

Figures 5(a) and 5(b) show the DSWCNT embedded within the epoxy molecular structure. The
composite molecular configuration with the defective SWCNT and EPON configuration as

previously discussed was constructed for each of the defective structures. Figures 5(a) and 5(b)
presents the composite molecular structure with defective SWCNT and one of the fully cured
EPON configuration employed in the present work. Figure 5(c) shows a zoomed image of the
DSWCNT depicting two missing carbon atoms, while Figure 5(d) shows the DSWCNT
depicting four missing carbon atoms. Figure 5(e) shows a side view of the zoomed CNT showing
the two defects.

40

Rule of mixtures was used to obtain the density of the composite molecular configuration. The
rule of mixtures density is given by Equation 2.

mixture - PSWCNTJSWCNT + Presin fresin (2)

where '^'««'"'-e' Pswcm ^^^ ^'"''"are the densities of the mixture, SWCNT and the epoxy resin,

respectively,
respectively.

f f ■ respectively, and •' SWCNT ^nd '""'" are the volume fractions of the SWCNT and the epoxy resin,

With the SWCNT having a density of 1.9 g/cm^ and the epoxy resin having a density of 1.2
g/cm , the rule of mixtures densities of the composite configurations were calculated using
Equation 2.

The composite rule of mixture density for different molecular configurations and weight
percentages of SWCNT is presented in Table 1.

41

Table 1. Rule of mixtures densities of the composites

Model
Weight percentage of
SWCNT

Rule of mixtures
density of
composite [g/cm^]

No defect

3 units SWCNT, 2 units resin 11.87

4 units SWCNT, 3 units resin 10.69

4 units SWCNT, 4 units resin 8.24

1.2549

1.2492

1.2376

2 defects

3 units DSWCNT, 2 units resin 11.58

4 units DSWCNT, 3 units resin 10.49

4 units DSWCNT, 4 units resin 8.08

1.2539

1.2482

1.2368

4 defects

3 units DSWCNT, 2 units resin 11.28

4 units DSWCNT, 3 units resin 10.34

4 units DSWCNT, 4 units resin 7.95

1.2521

1.2475

1.2359

Model Configuration A: 3 units of SWCNT, 2 units of resin

Model Configuration B: 4 units of SWCNT, 3 units of resin

Model Configuration C: 4 units of SWCNT, 4 units of resin

The Young's Modulus at the rule of mixtures density was obtained by conducting simulated
annealing analysis as discussed earlier at three different lattice configurations for each composite
molecular model configuration (corresponding to different weight percentage of CNT) and
extrapolating to the corresponding rule of mixtures density.

Results

42

The Young's modulus at the rule of mixture density for the three composite molecular
configurations with different weight% of defective SWCNT studied are shown in Table 2 and
Figure 6. Also shown are the Young's modulus obtained for the composite system with pure,
non-defective SWCNT [10].

Table 2. Evaluated Young's modulus at Rule of Mixture Density for the composites studied

CNT weight %

(No defect)

Young's Modulus [GPa]

11.87

10.69

8.24

No defect [10]

74

65

52.5

2 defects

60.75±1.96

54.77±1.12

45.38±1.05

4 defects

52.07±1.82

48.68±1.06

41.00±1.69

ou

♦ No defect ♦
70

n
• 2 defects ♦

S. 60 ▲ 4 defects •
O

« 50
♦

3 •
^40 A
S
.<« 30
O)
c
i 20
>■

10

0

4 6 8 10 12

Weight percentage of SWCNT

14

Figure 6. Variation of Young's modulus with SWCNT weight percent for No defect, 2 defects
and 4 defects

The following can be inferred from Table 2 and Figure 6.

43

• For a given initial weight percentage of SWCNT, the Young's modulus of the EPON-
SWCNT composites with non-defective SWCNT were the highest (52.5-74 GPa, for the
three weight % of the SWCNT studied in the three molecular model configurations).

• The predicted Young's Modulus for the composites with 2 SWCNT vacancy defects was
lower (45.38-60.75 GPa, for the three weight% of SWCNT studied).

• The predicted Young's Modulus was the lowest for the composite system composed of
EPON and SWCNT with 4 carbon vacancy defects (41.00-52.07 GPa, for the three
weight % of SWCNT studied).

The above inferences ascertain the fact that the molecular vacancy defects in SWCNT are one
potential cause for the reduction of Young's modulus of the EPON-SWCNT nanocomposite.

The reduction in Young's modulus between the pure CNT composite and the composite with two
defects in the CNT was in the range of 13-18% while that between the pure CNT composite and
the composite with four defects in the CNT was 21-30%. This is presented in Table 3.

Table 3. Percentage reduction in Young's modulus with the introduction of carbon
vacancy defects in CNT

CNT weight % Young's Modulus [GPa]

(No defect)

Vo reduction with 2 defects % reduction with 4 defects

in composite in composite

11.87 17.9 (2.78% defects in CNT) 29.6 (5.56% defects in CNT)

10.69 15.7 (2.08% defects in CNT) 25.1 (4.17% defects in CNT)

8.24 13.6 (2.08% defects in CNT) 21.9 (4.17% defects in CNT)

Table 3 can be interpreted as follows:

• For the 11.87% SWCNT composite system, introduction of 2.78% (equivalent to 2
carbon vacancy defects) of defects into the SWCNT resuhed in 17.9% overall reduction
in the Young's modulus of the composite. The introduction of 5.56% of defects in the
SWCNT (corresponding to 4 carbon vacancy defects) resulted in 29.6% reduction in the
Young's modulus of the composite.

44

For the 10.67% SWCNT composite system, introduction of 2.08% defects
(corresponding to 2 carbon vacancy defects in the SWCNT) resulted in 15.7% overall
reduction in the Young's modulus of the composite while introduction of 4.17% of
defects (corresponding to 4 carbon vacancy defects) in the SWCNT resulted in 25.1%
reduction in the Young's modulus of the composite.

For the 8.24% SWCNT composite, introduction of 2.08% of defects into the SWCNT
resulted in 13.6%) overall reduction in the Young's modulus of the composite while
introduction of 4.17% of defects into the CNT resulted in 21.9% reduction in the Young's
modulus of the composite.

Summary and conclusions

In this work, the effect of carbon vacancy defects on the mechanical properties (in particular
Young's Modulus) of SWCNT-EPON 862-DETDA nanocomposite was investigated with MD
simulations employing Materials Studio and Accelrys.

Three epoxy - SWCNT molecular model configurations with different weight percentages of
SWCNT was employed in this study. These molecular models had SWCNT weight percentages
ranging between 1% and 12%). Two types of carbon vacancy defects were incorporated into the
defective SWCNT models; 2 defects and 4 defects. After creation, minimization, and
equilibration of the different molecular models; MD simulations were conducted following a
simulated annealing process with temperatures ranging from 498 "K to 298 °K in steps of 10 °K.
Dynamic simulations were conducted for 200 ps (200,000 fs) with a time step of 1 fs at each
simulated annealing temperature studied. The final molecular structure of each annealing
temperature step was used as the starting molecular structure of the next annealing temperature
step. The average density was obtained at each simulated annealing temperature step. At 298 °K,
10 trajectories were saved at equal time intervals (20 ps) and employed in the mechanical
property estimations. The models with two defects (2.08-2.78% defects from the reduction in
carbon atoms due to their removal to create SWCNT carbon vacancy defects) showed a
reduction in Young's modulus between 13-18% when compared with the non-defective SWCNT
- EPON composite models. The models with four defects (4.17-5.56%) defects) showed a 21-
30%) reduction in the Young's modulus compared to pure, non-defective SWCNT - composite
molecular models. The influence of SWCNT defects (due to carbon vacancy defects in the
present study) reducing the Young's modulus could potentially be a contributor to the disparity
seen between the MD modeling results and experimental data cited in the literature.

45

REFERENCES

[1] Liu H., Brinson L. C, A hybrid numerical-analytical method for modeling the
viscoelastic properties of polymer nanocomposites. Journal of Applied Mechanics,
Volume 73, (2006) 758-762.

[2] Miyagawa H., Rich M., Drzal T. L., Thermophysical properties of anhydride-cured
epoxy/nano-clay composites, Polymer Composites, Volume 26, Issue 1, (2005) 42-51.

[3] Dutra R., Scares B., Campos E., Silva G., Hybrid composites based on polypropylene
and carbon fiber and epoxy matrix. Polymer, Volume 41, (2000) 3841-3849.

[4] Zhou Y. X., Wu P. X., Cheng Z. Y., Ingram J., Jeelani S., Improvement in electrical,
thermal and mechanical properties of epoxy by filling carbon nanotube. Express
Polymer Letters , Volume 2, Number 1, (2008) 40-48.

[5] Demcyk B. G., Wang Y. M., Cumings J., Hetman M., Han W., Zettl A., Ritchie R. O.
Direct mechanical measurement of the tensile strength and elastic modulus of multi-
walled carbon nanotubes. Materials Science and Engineering A, Volume 334, (2002)
173-178.

[6] Ning H., Zen M., Cheng Y., Go Y., Hsiao F., Toshiyuki H., The electrical properties of
polymer nanocomposites with carbon annotate fillers, Nanotechnology, Volume 19,
(2008)215701.

[7] Yue H., Elliot J., Molecular dynamics simulations of the elastic properties of
polymer/carbon nanotube composites, Computational Materials Science, Volume 39,
(2007)315-323.

[8] Zhu R., Pan E., Roy A. K., Molecular dynamics study of the stress-strain behavior of
carbon-nanotube reinforced EPON 862 composites, Materials Science and Engineering
A, Volume 447, (2007) 51-57.

[9] Gou J., Minaie B., Wang B., Liang Z., Zhang C, Computational and experimental study
of interfacial bonding of single-walled nanotube reinforced composites. Computational
Materials Science, Volume 31, (2004) 225-236.

[10] Komuves F., Prediction of mechanical properties of EPON 862 (DGEBF) cross-linked
with curing agent W (DEDTA) and (6,6) SWCNT using MD simulations, PhD
Dissertation, Mechanical Engineering 2009.

46

[11] Tack J. L., Ford D. M., Thermodynamic and mechanical properties ofepoxy resin
DGEBF cross-linked with DETDA by molecidar dynamics, Journal of Molecular
Graphics and Modeling, Volume 26, (2008) 1269-1275.

[12] Davis D., Klosterman, Kelkar A., Bolick R., Mohan R., Composite laminate structures
for mechanical and functional processes, Quarterly Report, April 2009-June 2009.

[13] Li Z., Wang C. Y., Ke S. H., Yang W., First principles study for transport properties of
defective carbon nanotubes with oxygen adsorption. The European Physical Journal B,
Volume 69, (2009) 375-382.

[14] Mielke S. L., Troya D., Zhang S., Li J. L., Xiao S., Car R., Ruoff R. S., Schatz G. C,
Belytschko T., The role of vacancy defects and holes in the fracture of carbon
nanotube. Chemical Physics Letters, Volume 390, (2004) 413-420.

[15] Mielke L. S., Zhang S., Khare R., Troya D., Ruoff R. S., Schatz G. C, Belytschko T.,
Mechanics of defects in carbon nanotubes: atomistic and multiscale simulations.
Physical Review B, Volume 71, (2005) 115403.

[16] Chico L., Crespi V. L., Benedict L. X., Louie S. G., Cohen M. L., Pure carbon
nanoscale devices: nanotube heterojunctions. Physical Review Letters, Volume 76,
Number 6, (2006) 971-974.

[17] Fefey E., Mohan R., Kelkar, A., Computational study of the effect of carbon vacancy
defects on the Young's modulus of (6, 6) Single Wall Carbon Nanotube, Material
Science and Engineering - part B, 176(9), 2001.

[18] Park Y., Lahaye R. J., Lee Y., Adsorption ofPt on defective carbon nanotube walls: a
DFT approach. Computer Physics Communications, Volume 177, Issues 1-2, (2007)
46.

[19] Liu W.K., Karpov E. G., Zhang S., Park H. S., An introduction to computational
nanomechanics and materials. Computer Methods in Applied Mechanics and
Engineering, Volume 193, (2004) 1529-1578.

[20] Sun H., The COMPASS force field: parameterization and validation for phosphazenes,
Computational and Theoretical Polymer Science, Volume 8, Number 1/2, (1998) 229-
246.

[21] Hu Y., Sinnott B. S., Constant temperature molecular dynamics simulations of
energetic particle-solid collisions: comparison of temperature control methods Journal
of Computational Physics, Volume 200, Issue 2, (2004) 251-266.

47

[22] Andersen C. H., Molecular dynamics simulations at constant pressure and/or
temperature. Journal of Chemical Physics, Volume 2, Number 4, (1980) 2384-2393.

[23] Brooks S. P., Morgan B. J. T., Optimization using simulated annealing. The
Statistician, Volume 44, Number 2, (1995), 241-257.

48

A-1-2: Modeling and Experimental Investigation on the Effect of Interlaminar
Nanofiber Layers on the Delamination Behavior in an Epoxy Fiber Glass
Composite

Authors: R. Mohan, A. Kelkar, N. Chinnanavar, S. Shendokar, North Carolina A&T State
University

M.S. Thesis work of N. Chinnanavar

Abstract

Delamination is one of the important failure mechanisms in composite materials. Several
methods such as stitching of fiber plies, self-healing polymer materials, and interface
reinforcements have been developed, investigated and employed over the years to improve the
delamination characteristics. The usage of interface material layers (in particular, sub-micron and
nano level materials) has also been recently investigated. This study focuses on the addition of
electrospun nano fiber interface layers between the traditional composite laminates and its effect
on the delamination characteristics in an epoxy-fiber glass composite system. Electrospun glass
nano fiber layers formed with TEOS (Tetra Ethyl Ortho Silicate) sol gel system are used as
interface layers. Delamination characteristics of the composite with and without electrospun fiber

interface layers are studied using double cantilever beam (DCB) tests. The experimental
characterization showed that addition of nano fiber layers provided consistent improvements in
the Mode-I fracture toughness values. Finite element modeling of the crack growth and
delamination failure with and without the nano fiber layers are studied and compared. The
Mode-I fracture toughness values from the finite element modeling are compared with the
experimental data.

1 Introduction

High specific strength, ability to be tailored with desired directional properties along with
integrability of cores and stiffeners easily; adaptability for complex shapes, corrosion resistance,
dimensional and hygro-thermal stability with excellent fatigue performance and low specific cost
are some of the prominent properties of composite materials that influences their widespread
application in the areas of aerospace, naval, automobile, wind energy, bridge and sports goods
industry. In spite of these advantages, there are integral challenges with composite material
development that arise due to inherent anisotropic nature of these laminated structures. A
laminated composite structure consists of fiber laminas which could be unidirectional, cross-ply
or multi-directional embedded in polymer matrix resin. While the fibers are the load carrying
members, the resin matrix is a load transfer member. Over the period of last 30 years variety of
fibers made of glass, organic (aramid), ceramic and carbon fibers have demonstrated effective
reinforcement to provide tailored properties of composite parts. Due to their good chemical and

49

thermal stability thermoset resins in particular epoxies are predominantly used as matrix for
many of the applications listed above.
As the strength of the fiber is much higher than the polymer matrix, failures of composites is
initiated in the matrix. Fiber-Polymer matrix composites have very high anisotropy; hence the
studies of failure mechanisms are much more complex. Complexity increases as failure of
composite parts is also dependent on the loading conditions, shape (geometry) and the properties
of its constituents. Invariably failure of composites at the micro level is in the form of damage
initiation, which over the life of a composite, is dispersed at random locations. When the density
of micro damage increases, there is a tendency towards coalescence leading into catastrophic
fracture [1-2]. The three regions in a composite that can experience damage leading to the
fracture are fiber, matrix or interface. Consequently, the failure modes identified in composites
are (i) Matrix Cracking, (ii) Interface Cracking, (iii) Delamination and (iv) Fiber breaking.
Figure 1 shows schematically various failure modes that could occur in laminated fiber
reinforced polymer matrix composites.

#■0 flf • e vj

o • #' # \ #

^— Matrix Cracks

Jik ^ ^ ^
s?r ^ w w

Fiber Breakage

-Fbsf - Mativ Dsboti'i X|

Figure 1: Failure Modes in Composites

One of the weakest and most frequently encountered failure modes of fiber glass composite
laminates is interlaminar delamination. This is also referred to as interlaminar cracking that can
cause severe loss of stiffness, which can propagate into catastrophic failure by means of splitting
of plies in a laminated composite. Delamination failure is complex due to geometric and material
discontinuity coupled with variety of loading that causes growth of delamination [3].

Various methods have been adopted to improve resistance to delamination. One of the earliest
attempts to improve resistance to delamination by optimizing stacking sequence was by Pagano
and Pipes [4]. They predicted detailed stacking sequence and specific layer orientations to
suppress damage growth under uniaxial static and fatigue loading. It was inferred that
interlaminar normal and shear stresses lead to coalescence of micro-cracks resulting in the
strength degradation due to delamination. It was proved experimentally, that the optimized
stacking sequence resulted in better strength of composite laminates. Matrix toughening is
another method that has proved to be effective to resist delamination. Various types of additives
like alumina nanoparticles [5] and CNT's [6] have been demonstrated to increase fracture

50

toughness. There exists a stress concentration at the free edges of composite laminate, which
leads into delamination. To suppress this stress concentration various methods of edge design
have been studied in the past [7]. Stitching, braiding and knitting techniques have been adopted
by many researchers to improve out of plane properties. While out of plane properties were
improved using these techniques, in some cases drastically, there was substantial degradation in
the in-plane properties of the composites. Interleaving is one of the prominent mechanisms
adopted and studied to improve resistance to delamination in the recent past [8-10]. These
methods while successful resulted in pitfalls which led to either degradation of some of the
properties or an increase in weight and/or increase in the cost of composite
material/manufacturing. In present study, performance and effect of interleaved electrospun
nanofibers in a glass fiber prepreg composite is analyzed experimentally and compared with a
simplified finite element modeling approach for Mode I fracture toughness.

There are several of finite element based approaches developed to analyze mode I fracture
toughness. Virtual Crack closure technique (VCCT) is one such approach introduced by Ronald
Krueger and Andrzej Leski [11-12]. VCCT is based on Irwin's crack closure integral, which
assumes that the energy AE released during infinitesimal crack growth from a to a + Aa is
equivalent to the energy required to close the same crack. Bonhomme [13] has extended the
study on the VCCT method in his research to introduce the two step extension method. In the
two step method, the crack path is modeled with a pair of nodes coincident at the same location.
The fracture toughness is calculated in two steps compared to one step in VCCT. In the first step,
the forces at crack tip are calculated; and then an imposed displacement is applied in conjunction
with the release of coupled degrees of fi^eedoms of nodes. J-Integral is a method to calculate
strain energy release rate per unit fracture surface area. This was developed by Cherepanov [14]
and later modified by Jim Rice [15]. While these analytical methods are proved to be suitable for
Mode I fracture toughness assessment via finite element modeling, they are complex in their
implementation and expensive in terms of computational resource.

In this work, we evaluate the applicability and performance of a simplified finite element
modeling approach proposed to analyze mode I fracture toughness. Mode I fracture toughness
values from the finite element modeling are compared to the experimentally determined values.
The material system used was LTM45EL/7725 pre-pregs with layers of tetra ethyl ortho-silicate
(TEOS) nanofibers produced by electrospinning at the critical interface of a double cantilever
beam (DCB) specimen. Finite element modeling results are compared for the DCB specimens
those were made and tested using ASTM D 5528 standard.

2 Experimental Investigations

51

This section briefly discusses the manufacturing of TEOS electrospun nanofibers and DCB
specimen for Mode I fracture toughness characterization using ASTM D 5528 standard
procedure. These experimental investigations were conducted as a part of research effort on
integrated composite technologies through a project on Center on Nano Science and Materials at
North Carolina A&T State University.

2.1 Electrospinning of TEOS Nanofibers

Electrospinning is a simple and versatile process to generate ultra-thin fibers from a variety of
polymer, ceramic or composite solutions [16-17]. The fundamental four components associated
with the electrospinning process as seen in the Figure 2 (a). In the electrospinning process, a
solution droplet is fed to the spinneret tip at a controlled rate using a programmable dispensing
pump. The dispensing pump is a Model NE-1000 Multi-Phaser supplied by New Era Pump
Systems Inc., and has the capacity of holding a syringe up to 50 mm in diameter. The pump can
dispense solution over a wide volume range of 0.1 ml per min. to 10 ml per min.

The solution droplet at the tip of the spinneret is acted upon by electro-hydrodynamic forces. The
electrical forces are due to the potential difference applied between the spinneret and the
collector plate. The spinneret is kept at a positive potential and the collector plate is usually kept

grounded. A FC Series, 120 Watt Regulated High Voltage DC Power Supply supplied by
Classman High Voltage, Inc., maintained a voltage of 18kV between the spirmeret and the
collector plate. Due to this applied potential difference, the solution droplet at the tip of the
spinneret acquires positive charge on the surface. The hydro-dynamic forces are due to the
surface tension of the liquid solution. The solution droplet is attracted to the collector plate and
forms a 45° semi-angle at the tip. The formed shape is called a "Taylor Cone" [18]. When the
viscosity of the solution is sufficient to provide stringiness, there is an elongation of the droplet
into a jet, which under the action of whipping and "Bending Instability" [19] forms fibers in the
range of 3mn to lum in diameter depending on the solution properties.

52

Dispensing Voltage
Pump Cables

Collector
plate

Spinneret

Figure 2: a) Electrospiiming Setup, b) Electro spinning Fiber Jet

Figure 2 (b) illustrates a droplet extending into a jet and then into an instability region. As the
droplet is stretched into a fiber and deposited onto the collector plate, there is an evaporation of
solvents. The deposition of fibers onto the collector plate is a random dispersion. The thickness
of this deposition is controlled using a steady motion of collector plate using the X-Y Velmex
Slides. The length of the deposited fibers can be 10 to 100 times to that of the fiber diameter. To
produce fibers less than 500 nm in diameter consistently, the electrospinning parameters are
experimentally found to be: 1 ml/hr rate of dispensing, 18 kV potential difference, a 80 mm
distance between the spinneret and the grounded collector plate and solution viscosity of 100-
200 centipoises. It was observed that, if the TEOS solution at the time of electrospinning
contains an excess of solvents, the formed random nanofiber mats evaporate off these solvents at
room temperature and generate cracks. Hence, the TEOS random nanofiber sheets were kept at a
normal atmospheric room temperature for about two days for natural evaporation of the solvents
to assess the consistency of the electrospun nano fibers. The morphology of the electrospun fibers
can be studied using a Scanning Electron Microscope (SEM). Figure 3 illustrates micrograph of
the TEOS electrospun fibers captured using a Hitachi S-3000 N SEM at 6000x magnification.

53

Figure 3: SEM Micrograph of TEOS Electrospun Nanofiber

The spiimable TEOS solution is obtained by hydrolysis and poly-condensation during the aging
process of TEOS as specified by the following chemical reaction [20]. Ethanol is used as
solvent for hydrolysis and HCL is used as catalyst to accelerate cross linking during aging
process.

nSi(OC2H5)4 + 4H2O -> nSiOz + 4nC2H50H (1)

2.2, Mode I Characterization of TEOS Interleaved DCB Specimen

One of the most critical tasks for conducting DCB tests is to make DCB specimen. It is critical
because if the specification of ASTM standard is to be achieved, significant control is required
vi^hile manufacturing the composite panel. The geometry specified for a DCB coupon specimen
is as shown in Figure 4 with the range for the dimensions within which DCB specimen should be
made. Final consolidation of the DCB specimens was completed under atmospheric vacuum and
temperature.

While laying up composite panel for DCB specimens, Teflon fihn is laid up at the mid-plane.
This is above the fifth ply of a ten ply E-glass fiber composite. The length of the Teflon fihn
should be about 4 inches while laying up the plies; with 1 inch Teflon film for the trimming
allowance and 1 inch for the piano hinge tab length. This ensures a 50.8 mm (2.0 in) initial crack
length in the DCB specimen. The thickness of the non-adhesive insert for the initial crack should
not be greater than 13 microns (0.0005 inch). For resin requiring a temperature less than 177 "C
(350 F), polytetrafluoroethylene (PTFE) is recommended. For resins requiring curing above this
temperature, a polyimide film is preferred.

The specimen dimension as recommended in the ASTM standard requires a 127 mm (5 inches)
specimen length, but it is recommended to have at least 50.8 mm (2 inches) more in length, so as

54

to make a total of 177.8 mm (7 inches). Out of this 25.4 mm (1 inch) will be for the bonding of
piano hinges, 50.8 mm (2 inch) initial crack length and the crack growth observed up to 50.8 mm
(2 inch) with additional 50.8 mm (2 inch) remaining as the end tolerance. The Mode I crack
opening is independent on the width of the specimen with the suggested width of specimen of
about 0.8 inch to 1.0 inch. The thickness recommended is 3-5 mm (0.12 - 0.2 inches). The
detailed procedure for bonding piano hinges and generating markings on "White-out" applied on
one side of the DCB specimen is elaborated in the standard. The marking which start from the
tip of the non-adhesive insert has the first five graduation spaced at 1.02 mm (0.04 inches) and
the remaining graduations are spaced at 5.08 mm (0.2 inch).

pjano \

«^2.0" —

 7.0
linges

Sfx

" - 9.0" -

scimen

- 0 12" - 0 2" / - Etectrospun Fibers /
/

V ML^A LJ
\

ti \ ——0.04" -- -^0.2" — 2.ff' —

, '—Non-Adhesive Insert
 1

1.0"

Figure 4: ASTM DCB Specimen Configuration

A Modified Beam Theory (MET) method which gives most conservative values was used to
compute the Mode I fracture toughness (Gic) values. MBT calculates Gic as follows

3xPxJ

"^ 2xbxa Gir- (2)

where,
P= LoadN(lbf),
5 = Load point displacement mm (in),
b = Specimen width mm (in), and
a = Crack (delamination) length mm (in).
GIC = Mode I Interlaminar Fracture Toughness J/m~ (Ibf/in^)

Table 1 presents the mode I fracture toughness values obtained experimentally for the composite
DCB specimen with and without electro-spun layers.

Specimen Neat (J/m^) Espun 1.0 gm (J/m)

1 335.87 646.76

2 419.26 578.00

55

3 412.34 655.64

4 332.56 801.76

Avg. Gic 375.00 670.54

Std. Dev. 47.20 94.11

Table 1: Comparison of average Gic values for Prepreg composites with and without electrospun
interface layer

3 Finite Element Modeling and Methodology for Gic Computation

3.1. Modeling Geometry of DCB Specimen

The fundamental concept for the fmite element modeling and analysis of DCB specimen
currently is based on the incremental deformation and damage progression of elements. The
continuous deformation is provided by incremental escalation of load values to a point where
few elements in the model exceeds the failure stress. Those elements which experience stress
level higher than the failure stress are substituted with weak material properties so as to identify
the "Failed" elements. Damage progression is simulated iteratively by load increment and
identifying and updating of failed elements.

The finite modeling of the composite laminate is conducted using a mosaic geometry for the
warp and weft elements of woven fabric [21]. In a modeled laminate, mosaic geometry is
interpreted as one mosaic cell representing warp (0 degree) and another mosaic representing weft
(90 degree). Eight such mosaic elements are placed in orthogonal array as shown in for a plain
weave fabric unit cell model. Dimensions of unit cell conforms the warp and weft tow geometry
of the actual prepreg material LTM45EL/7725 modeled currently as plain weave. Each unit cell
consists of 4 warp elements and 4 weft elements as shown in Figure 5. The unit cell is repeated
along the length and width to get the required specimen dimensions to form a single lamina
layer. This layer is repeated along the thickness direction so as to be equivalent to the actual
dimension of DCB specimen as that was used in the experiments.

56

Length
X (inch)

Thicl<ness
Y(inch)

Width
Z(inch)

Warp
0.0787 0.0098 0.0787

Weft
0.0787 0.0098 0.0787

Figure 5: Unit cell showing warp (0 Degree) and weft (90 degree) and the dimensions

3.2. Boundary Conditions and Loads

Due to symmetry, only one half the thickness of the DCB specimen geometry was modeled.
Symmetric boundary conditions were applied as defined to be zero displacements in y and z
directions from the point of crack tip for the bottom layered nodes as shown in Figure 6. The
load P was applied during finite element modeling analysis to conform to the load application
during the experiments as per ASTM standards at one inch from the edge of the DCB model
geometry and at two inches from the crack tip. Figure 7 shows the position of load application in
the FEM model.

Figure 6: Constraints and load applied in the finite element model

nnaniiiiiiiHMBiiiiniminiiiiiiiimiiiiiiinii!!
< ►■«-

1 inch 2 inch

Figure 7: Load P applied in the DCB finite element model

3,3. Failure Criteria and Degradation of Elements

57

During static finite element analysis of the crack propagation in the DCB specimen, load was
increased incrementally through distinct consecutive finite element analysis, and the
corresponding Von Mises stresses along x-direction near the crack tip were examined. The
incremental load increase was continued until the elements in the vicinity of crack tip failed. The
criterion for the failure of the elements was set to be the yield point of the resin, which is about
7,500 psi [22]. Once the stresses in the elements in the vicinity of the crack tip reaches 7,500 psi
or more, they were considered to have failed and degradation of these elements was done. The
failed elements still possess a reduced load carrying capacity and are still involved in the failure
phenomena. This behavior of failed elements is implemented in the finite element modeling
analysis by degrading the properties of the failed elements. Degradation of elements is also
known as killing of elements, in which the elastic moduli of failed elements are reduced to a
negligible value of 100 psi in the present work, and a poison's ratio of 0.01. The modulus is not
reduced to zero to avoid numerical difficulties which occur in finite element computations. The
crack growth phenomenon in the finite element analysis was implemented by the method of
degrading the failed elements and removing the constraints associated with these elements so
that they will have a very negligible effect on the subsequent analysis for the crack growth. This
method of removing the constraints was utiUzed to emulate the crack growth the finite element
models.

3.4. Finite Element Modeling Results for DCB Characterization

The composite material properties used in the finite element modeling were calculated using rule
of mixtures. To determine equivalent composite properties, baseline modulus of fabric 7725 and
Epon 862 were used with a 60% fiber volume fraction. The electrospun fiber layers were added
as an additional homogeneous material layer in the finite element model and were defined with
the equivalent fiber properties. The conditions for the propagation and growth in the DCB
specimen finite element models for the electrospun fiber interface layer composites are taken to
be the same as that of the neat composite DCB specimens. Mode I fracture toughness values
were computed according to the modified beam theory as specified in ASTM 5528 standard [23]
with the load and displacement values obtained from the fmite element analysis. The static,
linear finite element analysis was performed using the commercial ANSYS finite element
analysis software. The load-crack growth characteristics and the Mode-I fracture toughness
values from the finite element analysis are compared. Mode I fracture toughness values
determined experimentally from one set of experiments and from the present finite element
modeling are presented in Table 3.

Fracture toughness Gic
 (J/m^)

Finite Element Analysis Average value from
experimental test (J/rn^)

58

Neat Composite 429.25 375.23

Electro-spun Interface
Composite

566.76 670.54

Table 3: Mode 1 Fracture toughness Gicby finite element method and experimental
characterization

4. Concluding Remarks

Electrospun nanofiber interface layers in woven fiber composites provide an effective way of
integration of nanomaterial systems in fiber composites and have shown to improve the
delaminating mode I fracture toughness characteristics. A simplified fmite element modeling
approach was investigated for the modeling and analysis of the crack propagation in the
composite DCB specimen. The experimental Mode I fracture toughness values and the finite
element modeling analysis both based on modified beam theory are compared. The mode I
fracture toughness Gic obtained by finite element analysis for neat E-glass laminate were over
predicted by 14 percent when compared to the mean value of the experimental data and under
predicted by 15 percent over the mean experimental value in the case of E-glass laminate with an
electro-spun interface layer. The maximum value of experimental results differed only by 8 J/m^
when compared with finite element analysis result for E-glass prepreg laminate without electro-
spun interface, while the finite element analysis results compared with E-glass electro-spun
interface layer varied by only 9.75 J/m^ from the minimum value of the experimental data. The
mode I fracture toughness from the finite element modeling are in agreement and consistent
within the experimental range values. The present finite element modeling analysis is based on a
linear elastic model and a simplified approach of crack propagation by degradation. Even with
the simplified crack propagation model and linear elastic analysis in the finite element modeling,
the present simplified finite element modeling approach captures the crack propagation behavior
effectively and provides a computationally efficient modeling approach for delamination.

References

[1] Talreja R.: Transverse cracking and stiffness reduction in composite laminates. Journal of
Composite Materials, 19, 355-375 (1985).

[2] Talreja R.: A continuum mechanics characterization of damage in composite materials,
Proceedings of the Royal Society of London. Mathematical and Physical Sciences, 399
(1817), 195-216,(1985).

[3] Wang S.: Edge delamination in angle ply composite laminates, University of Illinois,
Urbana Champaign, NASA Report, (1995).

[4] Pagano N., Pipes R.: The influence of stacking sequence on laminate strength. Journal of
Composite Materials, 5, 50-57, (1971).

59

[5] Akinyede O., Mohan R.V., Kelkar A. D., Sankar J.: Static and fatigue behavior of
epoxy/fiberglass composites hybridized with alumina nanoparticles, Journal of Composite
Materials, 43(7), 769-781, (2009).

[6] Sadeghian R., Gangireddy S., Minaie B., Hsiao K.: Manufacturing carbon nanofibers
toughened polyester/glass fiber composites using vacuum assisted resin transfer molding
for enhancing the mode-I delamination resistance. Composites: Part A, 37, 1787-1795,
(2006),.

[7] Wu X., Dzenis Y.: Experimental determination of probabilistic edge-delamination strength
of a graphite-fiber/epoxy composite, Composite Structures, 70(1), 100-108. (2005).

[8] Kim J., Reneker D.: Mechanical properties of composites using ultrafine electrospun
fibers. Polymer Composites, 20(1), 124-131, (1999).

[9] Jiang W., Tjong S., Chu P.., Li R., Kim J., Mai Y.: Interlaminar fracture properties of
carbon fiber epoxy composites interleaved with polyethylene terephthalate films. Polymers
and Polymer Composites, 9(2), 141-145, (2001).

[10] Liu L., Liang Y., Xu G., Zhang H., Huang Z.: Mode I interlaminar fracture of composite
laminates incorporating with ultra-thin fibrous sheets, Journal of Reinforced Plastics and
Composites, Article in Press, 27, 1147-1162, (2008).

[11] Krueger R., O'Brien T.: A shell/3d modeling technique for the analysis of delaminated
composite laminates. Composites Part A: Applied Science and Manufacturing, 32, 25-44,
(2001).

[12] Leski A.: Implementation of the virtual crack closure technique in engineering FE
calculations. Finite Elements in Analysis and Design, 43, 261-268, (2007).

[13] Bonhomme J. et al.: Numerical and experimental validation of computational models for
mode I composite fi-acture failure. Computational Materials Science, 45, 993-998, (2009).

[14] Cherepanov G.: Crack propagation in continuous media. Journal of Applied Mathematics
and Mechanics, 31, 503-512, (1967).

[15] Rice J.: A path independent integral and the approximate analysis of strain concentration
by notches and cracks. Journal of Applied Mechanics, Vol. 35, pp. 379-386, 1968.

[16] Formhals A.: Process and apparatus for preparing artificial threads, US patent 1,975,504,
USA, (1934).

[17] Doshi J., Reneker D., Electrospinning process and appHcations of electrospun fibers.
Journal of Electrostatics, 35, 151-160, (1995).

[18] Taylor G.: Disintegration of water drops in an electric field. Proceedings of Royal Society
of London, Ser A, 280, 383-397, (1964).

[19] Yarin A., Koombhongse S., Reneker D.: Bending instability in electrospinning of
nanofibers. Journal of Appfied Physics, 89 (5), 3018-3026, (2001).

[20] Sakka S., Kamiya K.: The sol gel transition in the hydrolysis of metal alkoxides in the
relation to the formation of glass fibers and fihns. Journal of Non-Crystalline Solids, 48,
31-46,(1982).

60

[21] LTLM45EL Resin Data; 7725 Fabric data: http://w\vw.advanced-composites.co.uk
[22] http://www.hexion.coni/Products/TechnicalDataSheet.aspx?id=3950
[23] ASTM D 5528.: Standard test method for mode I interlaminar fracture toughness of

unidirectional fiber-reinforced polymer matrix composites, ASTM International, USA.

.*■:

61

A-2 Computational multi-scale deformation behavior in metallic and non-metallic
systems

Research activities and technical approach in this area during the project period focused on the
deformation behavior of nanoscale material systems with applications to tensile, flexural, and
crack propagation.

A-2-1 Molecular Dynamics Modeling of tensile, flexural and crack propagation
in metallic systems

Authors: R. Mohan, Y. Purohit, Y. Liang, North Carolina A&T State University

Published Journal Article: Journal of Computational and Theoretical Nanoscience. Vol. 9, Pages
1-13. 2012.

ABSTRACT

Nanomechanics is an evolving field that investigates the mechanical properties, deformation
behavior and characteristics of nanoscale structures. Due to the smaller lengths at the nano level,
principles of mechanics are employed in conjunction with interatomic potentials, molecular
forces and molecular dynamics. This paper highlights the underlying principles and discusses the
tensile and flexural deformation of Nickel nanowires; and dynamic crack propagation in
nanoscale Nickel and Nickel-Aluminum bimetal interface.

The tensile deformation behavior analysis indicates that Young's Modulus was independent of
the cross sectional area of the nanowire, and the strain rate. The flexural deformation and
vibration behavior indicates that the frequency of the vibrations as computed from time
displacement deformation behavior of the molecular configurations of the Nickel nanowire
beams are independent of the magnitude of external loading, and is consistent with the classical
beam theory.

The dynamic crack propagation behavior in a Nickel single crystal and a Nickel-Aluminum
bimetal interface are investigated. The propagation mechanisms and fracture behavior in Ni are
compared with such behavior in Ni-Al nanoscale bimetallic layer that initiates and propagates
from Ni towards the Ni-Al bimetal interface. Our results for Ni show an initial brittle crack
propagation followed by a roughening of the crack surfaces at one-third of the Rayleigh wave
speed. In Ni-Al, the crack surfaces initially grow brittle. Two regimes of crack propagation
velocities were observed in this case with crack getting decelerated as it nears the interface.

62

Further dynamic analysis of the crack propagation indicated a cease in the crack propagation in
Ni due to a brittle to ductile transition. In Ni-Al bimetal interface system, as the crack approaches
the interface, a process zone representing local disorder at the crack tip was observed to start
growing and interacting with interfacial defects that eventually results in a blunting of the crack
tip.

INTRODUCTION

Deformation behaviors of nanoscale metallic systems under mechanical loading conditions have
received considerable attention in the recent years. For example, in applications such as
nanoelectronics and nano-optoelectronics', the extraordinary mechanical strength along with the
small dimensions for the efficient transport of electrons of metallic nanowires have shown great
potential for the minimization of electronic devices. These metallic nanowires also show
potential for applications in electronic packaging, nanoelectronic and nanomechanical devices.
The structural strength and the stability under mechanical and thermal loading conditions of such
nanowires is however a significant issue. The deformation behavior of these nanowires under
different mechanical loads (for e.g., tensile, bending) is poorly known. Experimental
investigations of these behaviors are impractical due to their size and the complications of
applying these loading conditions via nano load cells within high resolution microscope systems.
Continuum mechanics based approaches generally treat the small cross-sectional area
configurations of these nanowires to be one-dimensional, where the cross-sectional effects are
taken to be negligible. However, at the atomistic level, the mechanical deformation and the
failure characteristics are inherently three-dimensional; depend upon the atomistic level
interactions and require analysis methodologies that effectively emulate the three dimensional
atomistic level characteristics.

Associated with mechanical deformation of the material systems are their fracture and failure.
Even at structural macro scale, the homogeneous, macroscopic (continuum) behavior is governed
by the physical processes that occur at the heterogeneous microscopic and sub-microscopic
length scales. For example, most metallic materials at macro scale consist of polycrystalline
aggregate of heterogeneous grains at the fine scale. The mechanisms of fracture and the crack
propagation not only depend upon the type of loading but also upon the type of defects such as
grain boundaries present as well as the physical interactions of dislocations in the microscale
grain boundaries. The forming dislocations in the single grain of the metallic material may also
depend on the heterogeneous interactions between the lattices of metal atoms at the atomistic
levels.

Continuum-based theories of fracture mechanics provide a variety of energy and force criteria to
model and predict the critical conditions for the onset and fiirther growth of statically or quasi-
statically loaded stationary cracks. The continuum theories have led to the development of a

63

detailed understanding of the mechanics of fracture. Despite their valuable contributions,
continuum modeling does not provide atomistic level details at nanoscale dimensions, interface
structures and properties, internal stress and energy distribution, dislocation nucleation and
motion; crack propagation and its interaction with interfaces in metallic composites to include
the effect of structures and processes that become important at nano scales. The strong constraint
of the small length scale on the crack behavior and dislocation activities at the nanometer scale
also give rise to deformation and failure mechanisms that differ significantly from the bulk
metals. Moreover, the interaction of cracks and dislocations with the interfaces becomes the
controlling parameter of plasticity in these systems. The detailed understanding of this problem
includes nucleation of dislocations at the crack tip, creation of dislocations at interfaces,
transmission of dislocations through interfaces and emission of dislocations from the interfaces.
This is only possible through three-dimensional atomistic level characteristics of such material
nanoscale material systems.

Nanomechanics is an evolving field that investigates the mechanical properties, deformation
behavior and characteristics of nanoscale structures. Due to the extremely smaller lengths at the
nano level and to capture the three-dimensional atomistic deformation characteristics of
nanoscale material systems, principles of mechanics are employed in conjunction with
interatomic potentials capturing the molecular forces, atomistic level interactions and molecular

dynamics; and offer a potential to understand the associated deformation behavior at nanoscale.
The computational modeling of nanoscale deformation behavior employs computational
techniques based on molecular dynamics simulations that couple the principles of mechanics
with molecular forces and interatomic potential providing an effective methodology. The present
paper focuses on the computational modeling of the deformation behavior in nanoscale material
systems with applications to tensile, flexural and crack propagation in nano scale metallic
systems, hi particular, this paper discusses the tensile and flexural deformation of Nickel
nanowires; and nanoscale dynamic crack propagation in Nickel and Nickel-Aluminum bimetal
interface. The basic principles associated with the modeling of deformation behavior in
nanoscale material systems are briefly highlighted first. This is followed by the discussions on
the tensile and flexural deformation behavior in Nickel nanowires and dynamic fracture in a
Nickel-Aluminum nano scale bimetallic interface.

NANOMECHANICS AND MOLECULAR DYNAMICS SIMULATIONS

Deformation at nanoscale based on nanomechanics couples the principles of traditional
mechanics and load applications with the fiandamental aspects of chemistry and solid state
physics. The movement of atoms in atomistic level systems can be analyzed through molecular
dynamics that moves the atoms using classical mechanics equations of motion according to the
inter-atomic force models from chemistry. Such equations of motion can be used to determine

64

the equilibrium (and minimum energy) structures or explore non-equilibrium dynamics. The
atomistic scale dynamic deformation analyzes the dynamic moving locations of atoms via
integration of the equations of motion. Computationally, the Newton's equations of motion
applied at each atom are numerically integrated. The classical equation of motion is given by

F. = -V.n(X) = ^^ = m. r^ = m. —- = m.a.
ax, ' de ' dt

(1)

where Y[(X) is the potential energy of the system, Xj and 111, are the atomic positions and masses

of each atom, and t is the time. The terms v,- and a, represent the velocity and acceleration of

each atom. The potential energy f] depends on the atomistic material and is given by an
analytical expression that yields energy as a function of the relative position of the atoms.
Several potential energy functions exist for different materials and other multi-material systems.
One such potential is Embedded Atom Method (EAM) potential and is used in the present study
2,3

Any molecular level system can be completely formulated by the positions X and velocity V (or
momentum P) of atoms. The above equation is similar to the Newton equations of motion
employed in continuum mechanics, but applied at the atomistic level. The dynamic behavior of
the time-dependent atom motion is computed using an integrator such as the Verlet integrator'*
to calculate the trajectories of the atoms. The time-scale involved in the MD simulations is of the
order of O (10"'^ - 10"'^ sec) and the length-scale is of order O (10""^ - 10"^ m). The molecular
dynamics simulator employed in the present study is LAMMPS (Large-Scale Atomic/Molecular
Massively Parallel Simulator)f from Sandia National Laboratory^

TENSILE DEFORMATION OF NICKEL NANOWIRES

The nano scale tensile and flexural dynamic deformation behavior of the Nickel (Ni) nanowires
due to tensile loading and flexural bending are presented in this section. The stress-strain
constitutive behavior, tensile strength and the Young's modulus for various Ni nanowire
configurations are presented and discussed. The natural frequency of the flexural deformation of
these nanowires in a beam configuration via molecular dynamics simulations is obtained and
analyzed. The simulation analysis of the deformation behavior in metallic nanowires modeled as
atomic systems at finite temperatures is a dynamic process and is conducted using classical
molecular dynamics.

Prior work in the literature exists on the deformation of the Copper and Gold nanowires^"'^ and
carbon nanotubes'^ via molecular dynamics (MD) methods, hi the present paper, the tensile

65

deformation behavior of a nanowire configuration formed from the single crystals of nickel in
the <001> (longitudinal), <100> and <010> (transverse) directions is considered. Most of the
current literature is focused on the tensile deformation of nanowire configurations of different
materials with very limited and non-existent work on the bending deformation behavior of
nanowires. In addition to this tensile deformation, flexural deformation of the Nickel nanowires
in a beam configuration is also presented.

Stress Deflnition in Nanoscale Deformation (Virial Stress)

A virial stress definition is used (Zhou, 2003) (Zimmerman et. al, 2003) to describe the
macroscopic (continuum) stress in accordance with the microscopic/nanoscale, atomistic
quantities ' . Given the phase status of atoms, the macroscopic stress tensor in a
macroscopically small, but microscopically large volume Q. is given by:

1 ^. . - .. _ . 1 a afi r\L^
^ * /en ^ i ■ ■

where

Ji},li Q-^ (3)

Here w, is the mass of the /-th molecule in Q, Xi is its position (or and P indicates Cartesian
components), v, its velocity, Q the local average velocity, and /J, is the force on molecule i exerted
by another molecule/. This virial stress is used to compute the stress values for the tensile and
flexural deformation behavior in the present paper.

Computational Model Configuration of Tensile Nickel Nanowires

Figure 1 shows the computational model configuration of nickel nanowires employed. The
nickel nanowires are made of Nickel FCC crystals with initial surface orientation of <100>,
<010> and <001>. The lattice constant of faced-centered cubic (FCC) nickel crystal is J=3.52

66

vu

Fig. 1. Configuration of Tensile Nickel Nanowires for Tensile Deformation

The length {L) of Ni nanowires was taken to be 60J in the <001> direction for the tensile
deformation behavior. Different cross-sectional sizes that range from 5 to 20 x for a side formed
the cross-section of the nickel nanowire configurations. Constant velocities ±Vo are enforced on
the top and bottom layers of the nanowires to emulate the tensile deformation. These top and
bottom layers define the boundary layer and have identical size of 1 lattice constant, along the
<001> crystalline direction.

Based on the velocities over boundary layers (±Vo), the atomistic nanowire model system deform
with a strain rate given by:

£■ =■
2F„

(4)

where L is the length of nanowires . ,

Different velocities were employed in the simulations to give different strain rate conditions.
Table 1 presents the velocity of boundary layers (Fy) and the resulting strain-rate. For the
nanoscale system, the velocity is expressed in terms of lattice-constant (J) per pico-second.

E(1/S)

1.67x10'
1.67x10^
1.67x10^
1.67x10 10

Vo (^/ps)
5x10"*
5x10
5x10
5x10"

-3

-2

Table 1. Tension Velocity of Nanowires and the Resulting Strain Rate

67

Effect of strain Rate

Figure 2 presents the tensile stress-strain behavior obtained for the two nickel nanowire
configurations with dimensions of 5x5x60 and 10x10x60 at various strain rates {1.67x10^ -
1.67>^10'" s'). These tensile deformation are obtained from MD simulations based on an NVE
ensemble at temperature T=300K. It is noted that a higher strain-rate led to higher oscillations in
the stress-strain curve due to the time dependent nature of the strain application and the
associated dynamic stress.

 " Strain-rate "1.67E10 (1/s)
 Str3in-rat«=1,ST E09 (I/5)
™ . Strain-rats™ 1.67 EOS {I/5J

"\ ' Strain-rate= 1,67 EOT (1/5)

''^■^■

V
^%S^^ . r. . '^-

Sliain-rjte»1.S7 E10 (l/s)
Strain-rate- 1.37 £09 (1/s)
Slraln-rae9= 1.67 EOS (Ks)
Strain-rate = 1.87 E07 {tin)

Strain Strain

(A) 5x5x60 (B)10x10x60
Fig. 2. Stress-Strain Curve of Nickel Nanowires under Various Strain-rates at T=300K.

The Young's modulus is determined from the tensile stress - strain curve for the strain s < 0.08
using a hnear regression. Table 2 and 3 shows the Young's modulus and maximum yielding
stress of nickel nanowires respectively under tensile loading.

Strain-rate(e) 5x5x60 10x10x60

1.67x10' 191.27 184.2127

1.67x10^ 189.82 192.0556

1.67x10^ 184.33 190.3636

1.67x10'° 182.71 187.2973

Table 2. Young's Modulus (GPa) of Nanowires with Various Strain-rates

These resuhs indicate that strain rate does not significantly influence the Young's modulus and
the maximum yield stress.

68

Max. Yielding Stress (GPa) 5x5x60 10x10x60
1.67x10' 15.7178 15.4835
1.67x10* 15.6100 16.6046
1.67x10^ 16.2640 15.6100
1.67x10'° 15.3314 17.0836

Table 3: Maximum Yielding Stress (GPa) of Nanowires with Various Strain-rates

Figures 3 and 4 present the progressive deformation and failure of 5x5x60 Ni nanowires for the
strain rates 1.67x10^ and 1.67xl0'° (s"') respectively. The deformation behavior indicates that the
yielding slip planes, cross slip and the breaking neck ,6, 12, 18 of nickel nanowires are influenced by
the strain-rate. The two deformation configurations presented in figures 3 and 4 are an
intermediate configuration during the deformation and the final yielding configuration. These
figures clearly show that the strain rate influences the yielding slip planes, cross slip, and the
breaking neck during the tensile deformation of Ni nanowires.

V
L.

Fig. 3. Tensile deformation and failure of 5x5x60 nickel nanowire; strain rate = 1.67x10 (s)

€3

Fig. 4. Tensile deformation and failure of 5x5x60 nickel nanowires; strain rate=l .67x 10 (s)

FLEXURAL DEFORMATION OF NICKEL NANOWIRES

The flexural deformation behaviour of nickel nanowires due to flexural bending based on their
atomistic configurations are discussed and presented next. In particular, the deformation

69

vibration frequencies obtained from the molecular dynamics simulations are compared with the
natural frequencies based on classical beam theory under two different boundary conditions.

Computational Model Configuration and Analysis of Flexural Nicliel Nanowires

Figure 5 presents the configuration of Nickel nanowire beams and the corresponding molecular
model. The molecular model configuration is based on single crystals of Nickel in the <001>
(longitudinal direction), <010> and <100> (transverse directions) directions and with a
dimension of 120x10x1 cubic lattice constants (rectangular cross section with a longer span).
Two types of boundary conditions are considered in the flexural deformation: 1. Both ends
pinned (i.e., simply supported), 2. Both ends clamped. The nanowire beam deflects under the
action of applied loading and when the loading force is removed, the displaced beam would try
to return to its original position. The inertia of the beam would cause the beam to vibrate. The
transient flexural bending dynamic behavior of the molecular configuration of Nickel nanowire
beams are investigated and analyzed.

The transient molecular dynamic simulations compute the new position of the atoms in the
Nickel nanowire beam subjected to the flexural loading and the boundary constraints. The time

increments are however significantly small in these dynamic simulations. A Mean Square
Displacement (MSD (u(t))) is defined and used as a measure of the average distance an atom in
the model travels over a certain time interval period. This is defined as:

msd{u{t)) = ^Z"? (0 =^j^{rXt)-r,{Q)f
(5)

+ '
Cross-

Neural Axis ^^r
ir=t7fv — .^i

■s.

Y:001

Z:010

M

^

i' ^
M

Fig. 5. Configuration of Nickel and Molecular Model of Nanowire Beams for Flexural
Deformation

70

The displacement Ui(t)=ri(t)-ri(0) is the distance traveled by molecule / over some time

interval t, and the squared magnitude of this vector is averaged over many such time intervals.

This MSD displacement value is used in the analysis of time dependent displacement response of
the Ni nanowire flexural beam configuration. The dynamic displacement responses under two
different boundary conditions for flexural bending are presented next.

Simply Supported Nickel Nanowire Beam

The Nickel nanowire beam configuration as shown in figure 5 is simply supported (rotations are
possible at the ends) and is subjected to a dynamic concentrated point load at the center of the
nanowire beam. Two different load values (F=0.01eV/A and 0.03eV/A) are analyzed.

500000 1E+06 1.5E+06
Timer(1e-14 sec)

2E+06

Fig. 6. Transient Dynamic Vertical Displacement at the Center (simply supported ends)

The dynamic vertical displacement at the center is proportional to the loading value and
increases with a higher magnitude of external loading. The natural frequency of the dynamic
vibration as computed from the above displacement - time profile is however independent of the

magnitude of external loading. The computed angular frequency from the predicted time
dependent deflection of the molecular model of the Nickel nanowire beam shown in figure 6 is
2.4166E+09}iL.

71

The natural frequency for the case of a simply supported beam based on classical beam theory
analysis is given by

/ Yl \ El

,pAL ^

Using a Young's Modulus value of E = 190 GPa (1.1859 eV/A^) obtained from the tensile stress
strain deformation of Nickel nanowires discussed earlier, the mode 1 frequency value based on
the classical beam theory is 2.5244E+10 Hz. This frequency as obtained from the classical beam
theory is at least one order higher than the frequency obtained from the time dependent
deflection using molecular dynamics simulations. The classical elastic beam theory based on
continuum mechanics principles also indicate that the natural frequency of vibration of a simple
supported beam is independent of the magnitude of the external loading and depends only on the
beam cross sectional moment of inertia, cross-sectional area, length and modulus of elasticity of
the material. The natural frequency obtained from molecular dynamics simulations for the
loading and simply supported boundary conditions as presented in figure 6 is also independent of
the magnitude of the external loading.

Clamped Nickel Nanowire Beam

The nanowire beam as discussed earlier is fixed at both ends (displacement and the rotation at
the ends are zero) and is subjected to external loading force at the center. As before, two
different loading values are investigated. Figure 7 presents the computed dynamic displacement
response of the loaded center of the nanowire beam. As seen from figure 7, the dynamic
displacement magnitude depends on the external loading value while the frequency of the
dynamic displacement is independent of the external loading values. This is in direct correlation
with the analytical results of natural frequency based on the classical beam theory.

The computed angular frequency obtained from the predicted time dependent deflection of the
clamped Nickel molecular beam shown in Figure 12 is 2.3271E+09 Hz. The frequency of
vibration based on the classical beam theory for this case of clamped ends is given by'^""'

CO ={K,L)\-^; K, =4.73

Using the same Young's Modulus for the Nickel nanowire as before, the mode 1 natural
frequency as obtained based on the classical beam theory is 5.7225E+10 Hz. This frequency
obtained from the classical beam theory is at least one order higher than the frequency obtained

72

from the time dependent center point load deflection using the deformation behavior from the

molecular dynamics simulations. The classical beam theory based on continuum mechanics
principles also indicate that the natural frequency of a clamped beam is independent of the

external loading and depends only on the beam cross sectional moment of inertia, cross-sectional
area, length, and modulus of elasticity of the material. This was also the case in the frequency of
the nanowire beams obtained from molecular dynamics simulations as presented in figure 7.

3

2 r

■£ Of-
a>
E
o
A)

M -3
■a

g -5
g -6 a.

o
i. -a

-9

-ID

■' both-end-clamp^d (p = 0.01 eV
"■' * ■- b«th-end-olampsi<l (p=0,03 eV)

f y
ly

J^
«

*(r
^;. (W

1 8

w V
/

_i L J I L.
0 250000 500000

Timer (1e-14 sec)
750000

Fig. 7. Transient Dynamic Vertical Displacement at the Center (clamped ends)

DYNAMIC CRACK PROPAGATION IN NANOSCALE MATERIAL SYSTEMS

Fracture and failure of simple and complex materials remain a fiindamental problem for
engineering and research community. Metal/metal interfaces with mismatch in physical and
mechanical properties are frequently encountered in a broad range of products of technological
importance; examples include wear-resistant and fatigue-resistant coatings for nano-materials. In
many of these applications catastrophic failure occur, when a crack initiated at the surface reach
the interface between the surface material layer and the base material.

Dynamic fracture has been studied experimentally and by large-scale atomistic simulations in
various materials"^"^^. Molecular Dynamics modeling of deformation due to fracture provide
time-dependent behavior of a propagating crack. The crack propagation under mode I loading in
a Ni single crystal and a Ni-Al bimetal interface system with a crack initiated and propagating
from the Ni surface layer towards the Ni-Al bimetal interface are presented in the present paper.

73

Analysis Methodology

Molecular Dynamics modeling employing the embedded atom method (EAM) inter-atomic
potential"'' '' was used to investigate properties of a (001) [100] crack system under mode I
loading in both the Ni and Ni-Al bi-metal interface systems. The EAM functions for Ni-Ni and
Ni-Al interactions used are the ones that were recently developed by Pun, et al^°.

The material configuration employed for the MD simulations and analysis is a strip geometry as
shown schematically in fig. 8 for both the Ni and Ni-Al system. Free boundary conditions were
applied in the x and z directions and periodic boundary condition was applied in the y direction
(with plane strain condition). The x, y and z axes are along the [100], [010] and [001]
crystallographic directions, respectively. For the (001) [100] crack system, the crack-free
surfaces are (001) and the crack propagates along the [100] direction. For Ni, the simulation slab
has dimensions of 199aNi x Vawi x 62aNi with 349,125 atoms, where aNi (3.52 A°) is the lattice
parameter of Ni. This molecular system configuration is believed to be large enough to take care
of the long-range character of the crack strain fields.

t
' .

Ni M

SSa^i

85a„ 99a;,

V V
Fig 8. Schematic of Strip Geometry for Ni and Ni-Al Bimetallic Interface

The nanoscale Ni-Al bilayer material configuration was created and assembled from two semi-
infinite perfect crystals of Ni and Al with an orientation relationship of [100] || [100], [010] ||

[010] and [001] || [001]. The thermodynamic and geometric factors both equally play an
important role in determining atomic structures of bi-metallic interfaces. The two dimensions in
the y and z directions were therefore, not chosen arbitrarily (due to lattice size mismatch of Ni
and Al) but determined such that the strains imposed on the Ni and Al semi-infinite perfect
crystals is minimum and the periodic boundary condition is ensured in the y direction. The Ni
crystal has 7 periodicity-lengths in the y direction and 62 periodicity lengths in the z direction,
whereas Al crystal has 6 periodicity lengths in the y direction and 54 periodicity lengths in the z

74

direction. The lengths of Ni and Al crystals in the x-direction were chosen to be 29.92 nm and
40.095 nm, respectively. The total calculated dimensions of 70.015 x 2.464 x 21.87 nm in the
three directions in Ni-Al were found to be comparable with the corresponding three dimensions
of 70.048 X 2.464 x 21.824 nm in the Ni single crystal. The energy of the nanoscale bi-layer was
first minimized using conjugate-gradient energy minimization technique. The system was than
relaxed using MD in NPT ensemble to a pressure of 0 Bar and a temperature of 0°K. The relaxed
semi-coherent structure showing atomic configuration at the Ni-Al interface, when viewed down
the [100] (x) direction is shown in fig. 9. In the figure Al and Ni atoms are shown in silver and
brown, respectively.

Fig. 9: Atomistic structure of the Ni-Al interface viewed along [100] (x) direction. Al and Ni are
shown in silver and brown, respectively.

For both the Ni and Ni-Al an initial crack of length 39aNi (aNi being the lattice parameter of Ni)
along the x-direction was introduced into the lattice by partially turning off inter-atomic
interactions between atoms in eight consecutive (001) planes. The two middle planes constituted
the upper and lower surfaces of the initial crack. The slab was initialized at zero temperature and
an outward strain rate of 1x10 sec' was imposed on the outer most columns of atoms defining
the upper fi^ee surface of the slab in the z direction. A linear velocity gradient was applied across
the slab and that applied an increased outward strain with time in the z direction creating the
Mode I fracture loading condition. This external loading leads to crack growth and propagation
that can lead to eventual structural failure of the material. Molecular dynamics simulations
presented in this work were conducted using molecular dynamics solver, LAMMPS^.

Deformation Due to Crack Propagation

The crack growth and propagation was studied on a (001) plane for both the Ni and Ni-Al

nanoscale material system. The strain energy release rate (G) is the amount of energy per unit

area that is supplied by the elastic energy stored in the system. This is calculated by integrating
the stress-strain curve with respect to strain, ^. In the present molecular system configuration,
this is given by

75

m

where, ^ is the width of the strip in the z direction and '^- is the z component of the stress. The
calculated stress-strain curves for Ni, Ni-Al and Al are shown in fig. 10. The stress for each atom
is due to its interaction with all other atoms in the system (within the force cut-off). Atomistic
per atom stresses, given by a "stress times volume" formulation, as implemented in LAMMPS

were calculated and summed over all the atoms of the system to get '^- component of the stress.

The sum was normalized by the system volume to finally compute ^=. As expected, ^-
increases with strain to a certain value and then decreases for all the three systems. The

maximum reached value of ^- was found to be 7.56 GPa for Ni, 4.72 GPa for Ni-Al bimetal
system, and 3.69 GPa for Al.

9 1
8 Ni

^. 5-

"^
1 -
0

/ '.;" . Nl-AI
••

•. Al
.* .

.•' ^^•^.•'•

' j> \''.

11

0 0.05 0.1

Strain

Fig. 10: Stress-strain curves for Ni, Ni-Al and Al

According to Griffith's criteria, a brittle crack under mode I loading propagates when ^

corresponding to an applied load is equal or greater than 2 ^', where ^' is the surface energy of
each plane of the crack. From the stress-strain curve, the calculated critical strain energy release

rate at which the crack starts to propagate in Ni (<^^') is 3.86 J/m^ and in Ni-Al (^^"') is 2.4
J/m . The corresponding given values of the Griffith load fi-om the EAM potential, which is

76

twice the (001) surface energy (^0, are 3.756 J/m^ for Ni (^^') and 1.886 J/m^ for Al (^^') ^'.

The value for the critical strain energy release rate in Ni-Al (^'^''^') in the present bimetal system
is between the Griffith loads for Ni and Al. The atomistic per atom stresses, as mentioned above,
were summed over all the atoms of the system before normalizing the sum by the system volume

to get ^' component of the stress. In the Ni-Al bimetal interface system they were summed over
both the Ni and Al atoms. The maximum attained stresses in the Ni, Ni-Al and Al systems as

obtained from the simulations are in the order -'^' > -'*'"<' > ^'. The large difference in the
maximum attained stresses (and therefore critical energy release rate) in Ni and Ni-Al is due to

the inclusion of the per atom stresses from Al atoms in computation of '^^ for the Ni-Al system.
The strain energy release rate, however, is related to the stress distribution around the crack tip
rather than the stresses of the whole system.

Temperature control, which may affect crack-tip dynamics, is not applied in this work. While the
initial temperature of the system is nearly zero, it increases as the crack advances. However, the
average temperature of all the three systems remained below 50°K during the entire simulations.
The snapshot pictures at various dynamic crack propagation simulation times showing
mechanisms of crack propagation in Ni and Ni-Al are shown in figs. 11 and 12. In both of the
figures the atoms are colored according to the centro-symmetry parameter^", which is a scalar
quantity designed to identify defects such as interfaces, stacking faults and dislocations. In all of
the images, atoms with a centro-symmetry parameter (P) close to zero were removed to facilitate
easier viewing of the defects inside the structures. The visible atoms are associated with crack
surfaces, exterior slab surfaces (only three surfaces are shown), Ni-Al bi-interfacial layer and
other defects created during crack motion. The atoms are colored with yellow for dislocations (P

0.5 - 4.0), brown for stacking faults (P 4.0 - 12.0), and green for surface atoms (P > 12). The
yellow and brown are also associated with atoms with crystallinity other than FCC. For both the
Ni and Ni-Al, the early time sequence of the crack propagation at simulation times of 40, 45 and
50 ps (fig. 11) show that the crack initially moves in a straight line with 'mirror' cleaved
surfaces. The crack surfaces in Ni (fig. 12) then began to roughen starting at around 55 ps with
crack eventually ceasing to continue further with proliferation of dislocations at the crack tip at a
simulation time of 65 ps. In Ni-Al (fig. 12) as crack nears interface a bud at the crack tip called
'process zone' began to grow at 55 ps along with roughening of the surfaces of the crack. The
process zone that represents a local disorder at the crack tip shows no apparent plasticity during
the initial brittle cleavage of the surfaces. At 65 ps, when the propagating crack tip lie roughly at
8.5 nickel lattice spacing (8.5 aNi) from the interface, the dislocations start emanating from the
interfacial bi-layer and they start traveling away from the interface towards the bulk Al. When
compared to Ni the crack tip in Ni-Al at 65 ps lags behind the crack tip in Ni by about 15.5
nickel lattice spacing (15.5aNi).

77

The snapshot pictures showing an enlarged and a close-up view of the defect structures formed at
the crack tip after initiation of plastic deformation at 65 and 70 ps in Ni are shown in fig. 13. The
atoms are colored as described above with yellow for dislocations, brown for stacking faults, and
green for surface atoms. The snapshots at 65 and 70 ps show formation and evolution of stacking
faults associated with nucleation of dislocations from the crack tip. The stacking faults are
bounded by dislocation loops, which start at the crack tip. The appearance of dislocations at the
crack tip suggests a dynamic brittle-to-ductile transition which leads to a crack arrest in the Ni.
When the surfaces of the crack began to roughen atomically, the crack attains a velocity of
approximately one third of the Rayleigh wave speed. A plot of crack tip position versus
simulation time for Ni is given in fig. 15. The initiation of the crack propagation is taken as the
zero simulation time. The crack tip position is determined by comparing the relative distance
between atoms of the upper and lower planes of the crack with a value for which the bond is
believed to be broken. The slope of the linear part of the crack tip position versus simulation time
gives velocity of the crack propagation (940 m/sec) to be about one third of the Rayleigh wave
speed (using Rayleigh speed of 2797 m/s^^). This crack surface roughening has been identified as
the onset of an intrinsic dynamical instability of the brittle fracture process by previous
investigators^^' ^'.

In Ni-Al bimetal system as discussed above, the crack surfaces initially grow brittle with crack
surfaces getting roughened at around one-third of the Rayleigh wave speed. However, two
regimes of crack propagation velocities were observed in this case (fig. 16). The first (960 m/sec)
corresponds to one-third of the Rayleigh wave speed with which the crack starts to propagate
after an initial transient time; the second (350 m/sec) regime corresponds with crack growth
getting decelerated as it nears the interface after the onset of crack surface roughening and
growth of the process zone at the crack tip. The snapshots showing structural evolution with time
at 67, 68, 69 and 70 ps as the growing crack approaches the interface are shown in fig. 14. The
atoms are again colored by centro-symmetry parameter with yellow for dislocations (P 0.5 -
4.0), brown for stacking faults (P 4.0 - 12.0), and green for surface atoms (P > 12). As the crack
growth approaches the bi-metal interface, dislocations start emanating from the interfacial bi-
layer and they start traveling away from the interface towards the bulk Al. At 68 ps, the 'process
zone' at the crack tip start interacting with defects at the interface that eventually blunts the crack
tip and ceases further crack growth ultimately prohibiting crack from propagating beyond the Ni-
Al interface. However, the system continues to dissipate elastic energy through continued
creation and motion of dislocations in Al. The snapshots in fig. 14 also show formation and
evolution of stacking faults associated with nucleation of dislocations from the interfacial bi-
layer. The stacking faults, which in this case start at the interfacial layer, are bounded by the
dislocation loops (colored in yellow in fig. 14).

78

Summary and Concluding Remarks

The extreme smaller lengths at the nano level require analysis methodologies based on three-
dimensional atomistic deformation characteristics for nanoscale material systems. In the field
nanomechanics, principles of mechanics are employed in conjunction with interatomic potentials
capturing the molecular forces, atomistic level interactions, and offer a potential to understand
the associated deformation behavior at nanoscale. The present paper presented the tensile and
flexural behavior of Nickel nanowires based on the dynamical behavior of their atomistic
structures. The results clearly elucidate the applicability of the nanomechanics based atomistic
modeling for the understanding of the behavior of such nanowires under mechanical loading
conditions.

79

The atomistic modeling simulations and configurations were also employed to understand the
dynamic crack propagation behavior in a nanoscale Nickel single crystal and a Nickel-Aluminum
nanoscale bimetal interface. The embedded atom method interatomic potential are used to
investigate the behavior of (001) [100] crack system under mode I loading. The dynamic crack
propagation for Ni show an initial brittle crack propagation followed by a roughening of the
crack surfaces at one-third of the Rayleigh wave speed. In Ni-Al, the crack surfaces initially
grow brittle. Two regimes of crack propagation velocities were observed in this case with crack
getting decelerated as it nears the interface. Further dynamic analysis of the crack propagation
indicated a cease in the crack propagation in Ni due to a brittle to ductile transition. In Ni-Al
bimetal interface system, as the crack approaches the interface, a process zone representing local
disorder at the crack tip was observed to start growing and interacting with interfacial defects
that eventually results in a blunting of the crack tip.

The fiindamental understanding of nanoscale crack propagation evolving into multi-scale nano to
continuum analysis are essential to optimize and ensure the safety and reliability of engineered
structures with nanocoatings, when a crack initiated at the surface reaches the interface between
the surface nanocoating material layer and the base material.

80

^ziS3*

40 ps 40 ps

Z»

45 ps 45 ps

■"tt^ra

50 ps 50 Ds

Fig.l 1: Simulation snapshots showing early-time sequence of crack propagation in Ni (left)
and Ni-Al (right) at 40, 45 and 50 ps. Atoms are colored by centro-symmetry parameter. gi

55 Ds

60 ps

imjjf^'."."

65 ps

55 DS

60 ps

65 ps

Fig. 12: Simulation snapshots showing late-time sequence of crack propagation in Ni
(left) and Ni-Al (right) at 55, 60 and 65 ps. Atoms are colored by centro-symmetry

82

MJMitMt 1 ^£.lt\,i. r-m i«.-f,i|j,||,,|,, ,,, ,n^

•i.imu,*fuA^m~Mtm.-.h,r^^'^>^, ,«> n s

60 ps 60 ps

65 ps 65 ps

a*ft3t-

^

70 ps 70 ps

Fig. 13: Simulation snapshots showing crack propagation in Ni at 60, 65 and 70 ps.
Left panel show three exterior slab faces. Right panel show a close-up view of the
defect structures. Atoms are colored by centro-symmetry parameter with yellow for
dislocations, brown for stacking faults and green for surface atoms. 83

67 ps 68 ps

69 ps 70 ps

Fig. 14: Simulation snapshots showing crack propagation in Ni-Al at 67, 68, 69 and 70 ps.
Atoms are colored by centro-symmetry parameter with yellow for dislocations, brown for

stacking faults and green for surface atoms. 84

Fig. 15: Crack tip position versus simulation time for Ni.

B1

300
*

m
k /^--^ "*"

c ■^

1 m-
0
0.

u
8
0

100

50

0
) 5 10 ts

Tin»{psj

21 25

Fig. 16: Crack tip position versus simulation time for Ni-Al.

85

References
1. H. Chen, C. Lin, W. Chen, Y. Hsu and R. Uang, Proceedings of International

Conference on Microsystems, Packaging and Assembly, Taiwan IEEE Paper 1-4244-
073504/06, (2006)

2. S. M. Folies, M. I. Baskes and M. S. Daw, Physical Review B 33, 7983 (1986)
3. M. S. Daw and M. I. Baskes, Physical Review B 29, 6443 (1984)
4. K. S. Cheung and S. Yip, Modeling Simul. Mater. Sci. Eng. 2, 865 (1994)
5. S. J. Plimpton, Journal of Computational Physics 117, 1 (1995)
6. W. J. Chang and T. H. Fang, Journal of Physics and Chemistry of Solids 64, 1279

(2003)
7. H. Ikeda, Y. Qi, Y. Cagin, K. Samwer, W. L. Johnson and W. A. Goodman III,

Physical Review Letters 82, 2900 (1999)
8. S. P. Ju, J. S. Lin and W. J. Lee, Nanotechnology 15, 1221 (2004)
9. W. W. Liang and M. Zhou, Size and Strain Rate Effects in Tensile Deformation of Cu

Nanowires. In 44th AIAA/ASME/ASCE/AHS Structures, Structural Dynamics, and
Materials Conference, Norfolk, VA, (2003),

10. H. S. Park and J. A. Zimmerman, Physical Review B 72, 54 (2005)

11. E. Z. Silva, A. J. R. Silva and A. Fazzio, Comp. Mater. Sci. 30, 73 (2004)
12. E. Z. Silva, Physical Review B 69, (2004)
13. K. M. Liew, X. Q. He and C. H. Wang, Acta Materialia 52, 2521 (2004)
14. J. A. Zimmerman, E. B. Webb, J. J. Hoyt, R. E. Jones and P. E. Klein, Modeling Simul.

Mater. Sci. Eng. 12, (2003)
15. M. Zhou, A New Look at the Atomic Level Virial Stress: On Continuum Molecular

System Equivalence. In Proc. Royal Soc. London A, London, (2003), pp 2347
16. D. Frankel and B. Smit, Understanding Molecular Simulations: From Algorithms to

Applications. Academic Press, San Diego, (2001),
17. J. Haile, Molecular Dynamics Simulations: Elementary Methods. John Wiley & Sons,

New York, (1997),

18. T. Schlick, Molecular Modeling and Simulation - An Interdisciplinary Guide. Springer-
Verlag, New York, (2002),

19. T. H. G. Megson, Structural Stress Analysis. John Wiley & Sons, New York, (1996),
20. J. W. Tedesco, W. G. McDougal and C. A. Ross, Structural Dynamics - Theory and

Applications. Prentice-Hall, (1999),

21. E. Volterra and E. C. Zackmanaglou, Dynamics of Vibrations. Charles E. Merrill
Books Inc., Columbus, (1965), Vol. ASIN B000BSN9QS, p ASIN B000BSN9QS

22. J. Fineberg, S. P. Gross, M. Marder and H. L. Swinney, Phy. Rev. Lett. 67, 457 (1991)

23. J. Fineberg, S. P. Gross, M. Marder and H. L. Swinney, Physical Review B 45, 5146
(1992)

24. S. P. Gross, J. Fineberg, M. Marder, W. D. McCormick and H. L. Swinney, Phy. Rev.
Lett. 71,3162(1993)

25. P. Gumbsch, S. J. Zhou and B. L. Holian, Physical Review B 55, 3445 (1997)
26. F. F. Abraham, D. Brodbeck, R. A. Rafey and W. E. Rudge, Phy. Rev. Lett. 73, 272

(1994)

27. F. F. Abraham, D. Schneider, B. Land, D. Lifka, J. Skorvia, J. Gemer and M.
Rosenkrantz, Materials Research Society Symposium Proceedings 463, 187 (1997)

28. M. S. Daw and M. L Baskes, Physical Review Letters 50, 1285 (1983)
29. M. S. Daw and M. I. Baskes, Physical Review B 29, 6443 (1984)
30. G. P. Pujara Pun and Y. Mishin, Philosophical Magazine 89, 3245 (2009)
31. Y. Mishin, D. Farkas, M. J. Mehl and D. A. Popaconstantopoluos, Physical Review B

59, 3393 (1999)
32. C. L. Kelchner and S. J. Plimpton, Physical Review B 58, 11085 (1998)
33. M. Karimi, T. Roarty and T. Kaplan, Modeling Simul. Mater. Sci. Eng. 14, 1409 (2006)

87

A-2-2 Mechanical Behavior of Nanoscale Metallic Composites - Dynamic Crack
Propagation in Ni-Al Bilayer Composite

Authors: R. Mohan, Y. Purohit, A. Kelkar, North Carolina A&T State University

Published Journal Article: Journal of Computational and Theoretical Nanoscience. Vol. 12,
Pages I-10, 2015

ABSTRACT

Nanoscale multilayer metallic composites (NMMCs) contain significantly high volume fraction
of interfaces and exhibit strengths much higher than that of bulk materials composing the
structures. This strengthening has been attributed to the presence of interfaces between materials
that differ in properties such as elastic modulus, lattice parameters, slip plane orientations and act
as barriers to propagating dislocations. This paper presents a review of two major factors that
influence the properties and behavior of the NMMCs: Interface structure,
Strengthening/Deformation mechanisms. The influence of semi-coherent Ni (nickel) - Al
(aluminum) interface on Mode-I crack propagation in nanoscale Ni-Al bilayer composite under
tensile and cyclic loading conditions analyzed through computational modeling is discussed.
Results for nanoscale Ni-Al bilayer composite showed initial brittle crack propagation with
planar cleavage of atoms followed by crack surfaces getting roughened when crack propagation
speed is about one-third of Rayleigh wave speed. In case of Mode-I tensile cyclic loading, crack
was found to propagate either by fatigue cleavage of the atoms or by void nucleation in the
regions near the crack tip, depending on the value of maximum strain applied. In Ni-Al bilayer
composite studied, as crack approached the interface, dislocations start emanating from the
interfacial layer. The creation of voids was found to slow down crack growth in both the Ni and
Ni-Al at higher maximum applied strain during cyclic loading. Plastic deformation was found to
dominate crack propagation during tensile loading that resulted in a slower crack growth than
cyclic loading. In all cases, presence of semi-coherent interface in the nanoscale Ni-Al bilayer
composite was found to prohibit crack from propagating beyond the interface.

KEYWORDS: Nanoscale metallic multilayers, interfaces, molecular dynamics, bimetallic
nanolayer, crack propagation.

INTRODUCTION

Nanoscale multilayer metallic composites (NMMCs) consisting of alternating nanometer (< 100
imi) thick layers of two or more materials on a suitable substrate have been of keen interest to the
materials community. Their potential for unique and technologically important combinations of
properties that emerge as the individual layer thickness is reduced to the nanometer-scale make

them uniquely multifunctional materials. NMMCs exhibit high strengths, which at room
temperature can approach one-half or one-third of the estimated theoretical strengths of
constituents'"^ improved ductility^ '', and good thermo-mechanical stability of interfaces* ^ '. In
addition to mechanical properties, novel electronic, magnetic and optical behaviors that result
from nanolayering, make NMMCs attractive for applications such as hard/wear resistant
coatings, diffusion barrier coatings, x-ray optical elements, magnetic recording media and heads,
and micro and nanotechnological devices/systems (MEMS and NEMS)'""'^. Besides coatings on
substrates, NMMCs also find applications as self-supported high strength foils for a variety of
structural applications. Multilayer technologies can also have a profound impact on
manufacturing processes by decreasing the amount of machining necessary between raw
materials and the finished products.

The mechanical properties and behavior of metallic multilayers has been the subject of extensive
research activity in the past decade. Nanoscale multilayer metallic composites contain extremely
high densities of interfaces, and achieve very high strength levels. The high densities of
interfaces at nanoscale are a contributing factor to these very high strength levels. Interfaces
between dis-similar material layers that differ in properties such as elastic modulus, lattice
parameter, defect energies, and slip plane orientations play a crucial role in determining the

material strength at nanoscale. The dissimilarities in the properties between the material layers
act as a strong barrier to slip transmission'*'"'*. In addition, as the layer thicknesses are reduced
from micrometer to the nanometer scale, the strengthening mechanisms transition from the Hall-
Petch model of dislocation pileups at the interface to the Orowan model of single dislocation
bowing between layers, and finally to the interface crossing mechanisms"'. The increased
strength achieved in nanoscale multilayers can be attributed to the resistance of the interface to
the transmission of a single glide dislocation. This single glide dislocation is considered to be a
critical unit process at layer thickness less than 5 nm, and largely determines the maximum
strength achieved in nanoscale multilayers. The maximum strength is dependent upon the atomic
structures and properties of the interface. These differences in the atomic structure and properties
of the associated nanoscale material layers also lead to different types of interfaces between the
material layers and their associated strengthening mechanisms.

Theory and multi-scale modeling analysis " " (atomistic modeling, elasticity-based
dislocation theory, dislocation dynamics simulations and crystal plasticity modeling) along with
experiments have been used to elucidate a variety of novel aspects of the strength, plasticity and
deformation of NMMCs. The deformation and behavior of NMMCs are influenced by the
crystallographic structures and properties of the interfaces that influence the strength; layer
thicknesses and the associated strengthening and deformation mechanisms at different length
scale thicknesses. All these factors influence the properties and deformation behavior of

89

NMMCs, including their tensile and fatigue properties, response to large plastic deformation, and
thermal stability.

The discussions present a review of the major factors that influence the properties and behavior
of the NMMCs: Interface structure, Strengthening/Deformation mechanisms. The interface
structure between two dissimilar metallic materials in NMMCs influence the deformation
behavior under Mode-I crack propagation. Mode-I crack propagation in a semi-coherent metallic
Ni (nickel)-Al (aluminum) bilayer under tensile and cyclic loading conditions analyzed through
computational atomistic Molecular Dynamics (MD) modeling is discussed. The discussions in
this paper are organized as follows. Major factors that influence the properties and behavior of
NMMCs, in particular. Interface structure, Strengthening/Deformation mechanisms are presented
in section 2 and 3. This is followed by brief discussions on prior literature on the atomistic level
modeling to study the nanoscale metallic structures/interfaces in section 4 followed by
discussions on the analysis of dynamic crack propagation in nanoscale Ni-Al bilayer composite.

INTERFACE STRUCTURE

The mechanical properties and deformation mechanisms of NMMCs depend strongly on the type
of metallic materials constituting the multilayers, and on the type of interfaces that form between
the two material layers ^". Interface act as barriers to propagating dislocations and cause strain
hardening of the nanoscale multilayer materials. Depending on the materials involved in the
multilayers, interfaces in NMMCs can generally be classified into the following four categories:
coherent, semi-coherent; incoherent and hybrid interfaces.

Coherent and Semi-Coherent Interfaces

Coherent interfaces form when the two metals have the same type of lattice structure (e.g., both
face-centered cubic (fee)) and the difference in the lattice parameters is relatively small, in the
order of a few percentages, e.g., the interface between fcc/fcc Cu-Ni system with cube-on-cube
orientation relationship'^"'^ "^ '^ ^^. In such systems, the two layers are constrained so that no
misfit dislocations can form to relax the stresses due to lattice mismatch, resulting in the
development of high stresses along the interface (coherency).

Semi-coherent interfaces form between metals with the same lattice type but larger mismatch in
the lattice parameters. Such interfaces are characterized by a network of misfit dislocations that
are needed in order to accommodate the large lattice mismatch at the interface e.g., the interface
between the fcc/fcc Cu-Ag system with cube-on-cube orientation'^. In this case misfit
dislocations relax the long-range coherency stresses and the interface between the misfit
dislocations remains coherent.

90

In most multilayers comprised of metals with the same lattice type and a small mismatch
however, both coherent and semi-coherent interfaces may form depending on the thickness of the
individual layers^"*. For relatively thin layers, fully coherent interfaces are more favored
energetically; however, a loss of coherency usually occurs when the layer thickness exceeds
some critical value. In the case of coherent and semi-coherent interfaces, where both materials
have the same crystal structures, slip planes and directions are nearly continuous across the
interface and such interfaces are therefore labeled transparent.

Strengthening in nanolayered composites with coherent interfaces is usually attributed to forces
on glissile dislocations at or near interfaces caused by lattice mismatch (coherency), elastic
mismatch (Koehler) and changes in core structure on passing from one layer to the other
(chemical). However, research suggest that for materials with coherent interface, the most
important effect on its strength is derived from the coherency strains''' '^. Earlier atomistic
simulations performed by Hoagland et al.'^"°, showed that the peak strength in coherent Cu-Ni
multilayers at layer thickness below 5 run may be interpreted in terms of the high coherency
stresses that must be overcome for single dislocation transmission.

In multilayers with semi-coherent interfaces, pre-existing networks of misfit dislocations often
dominate plasticity . The semi-coherent interfaces act as barriers to slip because of the residual
coherency stresses in areas between the misfit dislocations. Other factors acting as barriers to slip
include, the interaction between misfit dislocations and glide dislocations, and the creation of a
step when crossing occurs. The core structures of misfit dislocations play an important role in
affecting the way that misfit dislocations interact with the glide dislocations. Misfit dislocations
may be very narrow in the plane of the interfaces, as they are in Cu-Ni, or wide, as in Cu-Ag.
The wide core, closely spaced misfit dislocations in the latter case (Cu-Ag) effectively remove
local coherency stresses, promote dislocation mobility and lead to weak interfaces'^.

Incoherent Interfaces

Incoherent interfaces form between materials with different lattice structures, where the slip
planes and slip directions are discontinuous across the interface leading to negligible coherency
stresses in the system. A typical example of the incoherent interface is an interface between
fcc/bcc Cu-Nb system with Kurdjumov-Sachs (KS) orientation relationship'^, where interface
form along the close packed planes of Cu and Nb (111) and (110), respectively and the Cu and
Nb layers are oriented with respect to each other such that a <110> direction of Cu is parallel to a
<111> direction of Nb in the interface plane (the interface plane is Cu//Nb ''' '^ and within the
interface plane, <110>Cu//<l 1 l>Nb). Atomic relaxations in the interface lead to local patches of
high and low atomic coordination and periodic arrays of defects. Although periodic structures
might occur, they do not sustain the large stresses that can develop in both the coherent and
semicoherent interface systems (where two metals have the same crystal structure and the slip

91

planes and directions are continuous across the interface). Due to discontinuity of the shp planes
and directions, incoherent interfaces are also called opaque. The crystallographic discontinuity of
slip systems becomes a major factor that may inhibit slip transmission across the interfaces in
these systems.

Computational modeling simulations using embedded-atom potentials have been used to study
atomic structures of Cu-Nb incoherent interfaces'^ "' '^. For the KS orientation relationship,
atomistic simulations have identified a variety of possible atomic structures of Cu-Nb interface
with nearly same formation energies. The atomic structure, referred to as KSl, is formed by
directly combining the two semi-infinite perfect crystals of Cu and Nb according to the KS
orientation relationship"' '*. The atomic structure, referred to as KS2, is formed by inserting a
strained monolayer of Cu ^^ as an intermediate layer between the adjoining crystals in the KSl
interface. The inserted monolayer, a perfect Cu ^^ plane, is strained in a way so as to remove the
patches of under coordination present in the KSl interface"' "^, thereby stabilizing the interface
configuration even though it contains a strained Cu monolayer. Insight gained from the analysis
of the KS2 interface structure has been applied to predicting other pairs of materials that may
also form interfaces that lead to improved radiation damage resistance, such as those observed in
Cu-Nb multilayer thin-film composites.

The shear resistance and sliding mechanism of interfaces between Cu-Nb layered composites, as
a function of applied in-plane shear direction and different interface atomic structures have also
been studied using atomistic simulations"'. These simulation results indicate that the shear
strengths of Cu-Nb interfaces are significantly lower than the theoretical estimates of shear
strengths for perfect crystals, strongly anisotropic, spatially non-uniform, and strongly dependent
on the atomic structures of interfaces. The mechanism of interface sliding involves glide of the
interfacial dislocation loops that nucleate fi^om the weakest regions of the interface.

The low shear strength of the interface and the large in-plane anisotropy of shear strength have
significant implications for the interactions of glide dislocations, from either copper or niobium
crystal, with the interfaces. In addition to the geometric factor of slip discontinuity in Cu-Nb
layered composites, atomistic simulations reveal several important factors, directly related to the
weak interfaces that hindered transmission of dislocations across the interfaces"**. The stress field
of a glide dislocation approaching the interface exerts enough stress to locally shear the weak
interfaces, resulting in its (dislocation's) absorption and spreading of its core in the interface
plane, thereby hindering its transmission.

DEFORMATION/STRENGTHENING MECHANISMS

92

Experimental observations of high yield strengths in nanoscale layered materials cannot be
explained by a simple extrapolation of scaling laws such as the Hall-Petch relationship.
Deformation mechanisms in these materials depend on layer thickness, X. When the layer
thickness is on the order of several tens to several hundreds of nanometers (> 50 nm), the Hall-
Petch effect is considered to be the main reason for the material's strength increase' ^^"'*^.
However, when the layer thickness becomes less (< 50 nm) than the distance required for
dislocations to interact and form substructures in bulk materials, strength does not obey the Hall-
Petch relation. The Hall-Petch model is based on dislocation pile-up mechanisms. Creation of
dislocation pile-ups, at A. < 50 nm becomes difficult and essentially new mechanisms that are
based on interactions of single dislocations and interfaces come into play. Interfaces becomes the
controlling parameter of plasticity in NMMCs "* '^"-° "^ '^ '^ "^K

The flow strength as a function of the thickness of the individual layers, X, for Cu-Cr, Cu-Nb,
Cu-Ag, Cu-Ni, and Cu-304SS bi-material systems is shown in figure 1^°. The data fit a Hall-
Petch relation {a ~ X'"") between strength and layer thickness for A. > 50 nm. The Hall-Petch
model is based on dislocation pile-ups at layer interfaces. Stresses at the tip of the pile-up are
amplified by the number of dislocations in the pile-up and possesses a mechanical advantage that
enables large-scale deformation at low applied stress levels. For smaller thicknesses, a < 0.5,

where a is the X - exponent in the empirical Hall-Petch relation, a = k >t"" + ko. As the layer
thickness is reduced, the number of dislocations in the pile-up is reduced. In the limit where the
transfer of slip across interfaces is left to single dislocation, the mechanical advantage is lost
requiring large applied stress to accomplish transfer across the interface. This accounts for
transition from the Hall-Petch to the plateaus for A, < 50 nm, and a ~ 0, in fig.l. The hardness
data of Al-Nb and Cu-Va that is reported in reference ^ also show similar trends. The differences
in the mechanical properties, in particular the Hall-Petch slope and the peak hardness for several
bi-material systems as reported in reference were interpreted in terms of the differences in
shear moduli, heat of mixing, and characteristics of interfaces.

93

SOnm 10 5 it 1 nm
a

7 : y y y f y •
; ■ ■ ■ *

® ■

-, 6 ♦• # ro ■
a. ® - .
52-5 - I •' t- + :
to ■ X

- #
 0 0 - f- :

0) m #
c 4 1 J« o
•a r;«. o w

^ 3 :£a° ■ Cu-Cr \

:W » Cu-Nb \
2 ; O Cu-Ag :

1 ■

+ CU-304SS '

0 ■ , 1 , 1 . . . 1 , , 1 , . . 1 . . , 1 . , , ■

0.2 0.4 0.6 0.8 1 1.2

1/\A{nm" =)

Fig. 1. Hardness as a function of layer thickness for several nanolayered composites (at larger
layer thickness the hardness is approximately linear with X'^'') [20].

For I. approximately less than 50 nm, deformation occurs by confined layer slip (CLS) that

involves propagation of single dislocation loops parallel to the interfaces in both layers.
Dislocations are confined to individual layers since the interface barrier stress to slip
transmission is higher than the CLS stress. The CLS stress, which increases as X decreases,
eventually exceeds the interface barrier strength denoted as T to the transmission of a single
glide dislocation at X < 5 nm and the deformation mechanism changes from CLS to interface

*
crossmg of single dislocations. T is defined as the interface crossing stress, without the
mechanical advantage of a dislocation pile-up.

The interface-controlled plasticity (interaction of single dislocations with interfaces) of
nanolayered materials constitute a complex problem, because it involves the details of the
creation of dislocations at interfaces, their transmission through the interface and processes of
storage and relaxation at the interface. An extensive use of theory and modeling (discussed in
part in section 2) has been made to elucidate the intricate nature of these complexities.

Hoagland et al developed dislocation models using theory and simulations to interpret the length-
scale dependence of strengthening mechanisms in a fcc/bcc Cu-Nb system with incoherent
interfaces over a layer thickness ranging from micrometers to less than a nanometer^'. A
dislocation pile-up-based Hall-Petch model was found applicable at the sub-micrometer length
scales and the Hall-Petch slope was used to estimate the peak strength of the multilayers. The
experimentally measured Hall-Petch slope correlated well with the peak strength of the

94

multilayer, -2.6 GPa that was observed at a layer thickness of 1 nm, where the Hall-Petch
extrapolation is not valid.

ATOMISTIC MODELING OF NANOSCALE METALLIC INTERFACE STRUCTURES

Atomistic modeling has been used to study interface structure/properties and its effect on the
mechanisms of interactions of artificially introduced single dislocations with the interfaces in
NMMCs. It has also been used to elucidate details of plastic deformation and the underlying
deformation mechanisms during nanoindentation of NMMCs, where dislocations repeatedly
nucleate under indenter and then move and interact with interfaces. Medyanik and Shao (2009) "^^

have modeled indentation of a Cu-Ni bilayer with coherent (111) interface by indenting it
both from the Cu and the Ni side. The mechanisms of dislocation- interface interaction observed
in the two cases are found to be quite different. Interfacial stacking fault formation is observed
only when dislocations propagate from Ni into Cu. In addition to deformation, they also analyze
the effects of dislocation-interface interaction on the overall strengthening of the material.

Using molecular dynamics techniques, Saraev and Miller''^ studied the nano indentation of
copper single crystals coated by a thin epitaxial nickel layer forming a semi-coherent interface.

They observed that the evolution of plastic deformation depends strongly on the structure of the
interface, in particular, on the initial position of misfit dislocations with respect to the indenter.
Depending on the position of the misfit dislocations, either dislocation pile-up or dislocation
transmission through interface is observed. They also observed a significant strengthening of
copper films by thin nickel coatings.

Shao et al studied dislocation nucleation and propagation during nanoindentation in a Cu-Nb
bi-layer with incoherent interface using atomistic simulations. The interface acts as a very strong
barrier to dislocation propagation. When dislocations reach the interface fi-om the Cu side, an
interfacial shear is observed and no dislocations are transmitted across the interface from Cu into
Nb even at very deep indentation depth. However, when indenting from the Nb side, although a
considerable amount of interfacial shear occurs, transmission of dislocations was found to occur
from Nb to Cu.

As discussed above, atomistic modeling techniques such as molecular dynamics are effective in
understanding the effect of interface/structures on the deformation behavior including crack
propagation in nanoscale multilayer metallic composites. The next section presents and discusses
the raode-I dynamic crack propagation in a Ni-Al bimetallic nanolayer.

95

DYNAMIC CRACK PROPAGATION IN NANOSCALE NI-AL BILAYER COMPOSITE

Most studies of crack propagation in nano-scale regime have concentrated mainly on the fracture
behaviors under tensile loading of either single crystal materials ^'' ^' or of nano-structures
containing grain boundaries and interfaces between similar types of materials ^^' ^'*. Only few
studies have considered crack propagation in nano-structures with interfaces between materials
of dissimilar types ^^' ^^. Furthermore, very few studies have been performed at atomistic level to
investigate material behaviors under cyclic loading '^' ^^.

Nanoscale bilayer metallic composites with mismatch in physical and mechanical properties
between two metals across the interfaces are frequently encountered in a broad range of
applications of technological importance; for example in micro-electro-mechanical and nano-
electro-mechanical systems. The mechanical rehability of MEMS/NEMS, in service, depends
strongly on their resistance to fracture in the presence of small numbers of cracks formed during
their production and operation cycles.

Among various atomistic simulation methods, molecular dynamics (MD) has become a method
of choice to study fracture at the atomic scale, as it can provide time-dependent information and
allows for the inclusion of strain rate and temperature as meaningful variables in the analysis. In

the present work, molecular dynamics simulations is used to investigate crack propagation under
cyclic loading in a Ni single crystal and a Ni-Al bi-metallic interface system, in which a crack
initiates and propagates from the Ni surface layer towards the Ni-Al bi-metallic interface. This
Mode-I dynamic crack growth and propagation under tensile and cyclic loading conditions are
discussed.

Modeling Methodology

Molecular dynamics simulations using embedded atom method (EAM) inter-atomic potential
were empoyed to investigate crack propagation in both the Ni and Ni-Al bi-metallic interface
system. The selection of the embedded atom method (EAM) for the energy fiinctional in
molecular djTiamics simulations is a popular choice for the fee close-packed metals. The EAM
potential developed by Pun, et al ^^ was used to defme inter-atomic interactions between the Ni-
Ni and Ni-Al atoms. For dynamic crack propagation in Ni-Al bilayer composite, it is critical that
the potential reproduces the elastic constants as well as surface energies very accurately and the
potential used has been fitted to the elastic constants, surface energies and to other bulk and
surface properties of Ni and Al.

96

Bi-Metallic Nanolayer

The schematics and atomistic structures of the simulation geometry used in the present work for
the Ni and Ni-Al are shown in figure 2. The x, y and z axes are along the [100], [010] and [001]
crystallographic directions, respectively. The (001) [100] crack system was studied in both the
configurations. For the (001) [100] crack system, the crack-free surfaces are (001) and the crack
propagates along the [100] direction. An initial crack of roughly 1/5 the system length is
introduced by partially turning off inter-atomic interactions between atoms in the eight
consecutive (001) planes. The two middle planes constitute the upper and lower surfaces of the
initial crack. The crack plane is parallel to the xy plane. Free boundary conditions were applied in
the X and z directions and periodic boundary condition was applied in the y direction (with plane
strain condition). Molecular dynamics simulations presented in the work were conducted using
molecular dynamics program, LAMMPS''".

For the single crystal Ni, the simulation slab had dimensions of 199aNi x 7 ani x 62 awi with
349,125 atoms, where awi (3.52 A") is the lattice parameter of Ni. This molecular system
configuration is believed to be large enough to take care of the long-range character of the crack
strain fields. The Ni-Al bi-layer model was created and assembled from the two semi-infinite

perfect crystals of Ni and Al with an orientation relationship of [100] || [100], [010] || [010] and
[001] II [001]. The two dimensions in the y and z directions were not chosen arbitrarily (due to
lattice size mismatch of Ni and Al) but determined such that the strains imposed on the Ni and Al
semi-infinite perfect crystals is minimum, and also periodic boundary condition is ensured in the
y direction. The total calculated dimensions of 70.015 x 2.464 x 21.87 nm in the three directions
in the Ni-Al were found to be comparable with the corresponding three dimensions of 70.048 x
2.464 X 21.824 nm in the Ni single crystal. The energy of the bi-layer was first minimized using
conjugate-gradient energy minimization technique. The stresses were than relaxed using MD in
NPT ensemble to a pressure of 0 bar and a temperature of 0 °K.

Ni Al

I
(a) (b)

Fig. 2. (a) Schematic of geometry for Ni; (b) Schematic of geometry for Ni-Al bi-layer nanoscale
metallic composite.

97

RESULTS AND DISCUSSIONS

Mode I Uniform Loading

The crack growth and propagation was studied on a (001) plane for both the Ni and Ni-Al.

The strain energy release rate (G) is an important quantity in the analysis of crack propagation.
This is the amount of energy per unit area that is supplied by the elastic energy stored in the
system. It can be calculated by integrating the stress-strain data with respect to strain, ^ . In the
present molecular strip system, this is given by

where, w is the width of the strip in the z direction and o-.- is the z component of the stress. The
stress for each atom is due to its interaction with all other atoms in the system (within the force
cut-off). Atomistic per atom stresses, a stress x volume formulation, as implemented in
LAMMPS were calculated and summed over all the atoms of the system to get o-^ component of

the stress. «■ increases with strain to a certain value and then decreases for all the three systems.
The maximum reached value of '^^ was found to be 7.56 GPa for Ni, 4.72 GPa for Ni-Al and
3.69 GPa for Al.

According to Griffith's criteria, a brittle crack under mode I loading propagate when G

corresponding to an applied load is equal or greater than l^s, where J'* is the surface energy of
each plane of the crack. The calculated critical strain energy release rate from the stress-strain
curve at which the crack starts to propagate in Ni (G,«) is 3.86 J/m' and in Ni-Al (G.V.„) is 2.4
J/m . The corresponding given values of the Griffith load from the EAM potential, which is

twice the (001) surface energy (r.), are 3.756 jW for Ni («.,) and 1.886 jW for AI (G„) ^\ The
snapshot pictures showing an enlarged and a close-up view of the defect structures formed at the
crack tip after initiation of plastic deformation at 50 and 70 ps in Ni and Ni-Al are shown in
figure 3. The atoms are colored in these figures with yellow for dislocations, brown for stacking
faults, and green for surface atoms. The snapshots at 70 ps show formation and evolution of
stacking faults associated with nucleation of dislocations from the crack tip. The stacking faults
are bounded by dislocation loops, which start at the crack tip. The appearance of dislocations at
the crack tip suggests a dynamic brittle-to-ductile transition which leads to a crack arrest in the
Ni. When the surfaces of the crack began to roughen atomically, the crack attains a velocity of
approximately one third of the Rayleigh wave speed.

98

=-3 „ . :::a

■-■

Nickel Ni - Al
(a) at 50 ps

Nickel
(b) at 70 ps

Fig. 3. Snapshots of crack propagation in Ni and Ni-Al Bi-metallic nanolayer

In Ni-Al bimetal system, the crack surfaces initially grow brittle with crack surfaces getting
roughened at around one-third of the Rayleigh wave speed. As the crack growth approaches the
bi-metal interface, dislocations start emanating from the interfacial bi-layer and they start
traveling away from the interface towards the bulk Al. As the crack nears the bi-metal interface,
the 'process zone' at the crack tip start interacting with defects at the interface that eventually
blunts the crack tip and ceases fiirther crack growth ultimately prohibiting crack from
propagating beyond the Ni-Al interface. However, the system continues to dissipate elastic
energy through continued creation and motion of dislocations in Al. The snapshots in figure 2(b)
for Ni-Al also show formation and evolution of stacking faults associated with nucleation of
dislocations from the interfacial bi-layer. The stacking faults, which in this case start at the
interfacial layer, are bounded by the dislocation loops (colored in yellow). Further discussions
and details are presented in ^^.

Cyclic Loading

Cyclic loading was applied in a strain-controlled marmer at a strain rate of 2.29x10^ s"'. To
simulate fatigue failure in a small number of cycles, the structures were subjected to maximum
strains (Cmax) larger than those required for initiating crack propagation in Ni and Ni-Al. The
loading pattern applied to the two systems with a load ratio of 0.85, and two different maximum

99

applied strains (Cmax) of 0.046 is shown in figure 4. A high value of load ratio (emin / Cmax = 0.85)
was used to prevent the inner faces of the crack from contacting each other during unloading.
Before applying cyclic load the two systems were subjected to initial tensile strains of 0.039 for
Cmax of 0.046.

The slabs were initialized at zero temperature and the outward strain rate of 2.29x10^ s"" was
imposed on the outer most columns of atoms defining the upper free surfaces of the slab in the z
direction. A linear velocity gradient was applied across the slab resulting in an increased outward
strain with time in the z direction. After loading to a given maximum strain (Cmax) the directions
of the velocities and the velocity gradient were reversed unloading the system to reach the
minimum strain (Cmin). The atom velocities were initiated in the required direction at the
beginning of each loading and unloading half cycle to alleviate the stress wave overlap that could
arise from the high rate of deformation. The loading and unloading cycles lead to the crack
growth and propagation and eventual structural failure of the materials.

The crack growth and propagation were studied on the (001) plane for the two systems.
Illustrative pictures after various loading cycles (and Cmax) showing mechanisms of crack
propagation for both Ni and Ni-Al are shown in figure 4. In all of the figures discussed, the
atoms are colored according to the centro-symmetry parameter, which is a scalar quantity
designed to identify defects such as interfaces, stacking faults and dislocations. In all of the
images, atoms with a centrosymmetry parameter close to zero are removed to facilitate easier
viewing of the defects inside the structures. The visible atoms are associated with crack surfaces,
exterior slab surfaces (only three surfaces are shown), Ni-Al bi-interfacial layer and other defects
created during crack propagation. The atoms are colored with yellow for dislocations, brown for
stacking faults, and green for surface atoms. The yellow and brown are also associated with
atoms with crystallinity other than the fee.

Fig. 4. Strain controlled loading pattern applied to Ni and Ni-Al nanolayer

100

Case 1: Maximum Strain (Cmax) = 0.046

For the maximum applied strain emax of 0.046, the snapshot sequence of the crack propagation
during fatigue cycles 1 and 3 for Ni and Ni-Al (figure 5(a) and 5(b)) show that the crack in both
systems at lower e^ax move in a straight line with fatigue cleavage of atomic bonds in the crack
plane. The crack growth in Ni however, stops after 9 cycles and crack length fluctuates at around
645 angstroms for the next 20 fatigue cycles. The dislocations nucleate from the crack tip during
the 29' fatigue cycle. For Ni-Al, the propagating crack reach the interface during the 3'^'* fatigue
cycle. When crack reach the interface, dislocations start emanating from the interfacial bi-layer
(figure 5(b)). With continued cyclic loading little changes in the defect structures that form,
when crack hit the interface, were observed.

Ni Ni - Al
(b) After 3 fatigue cycles

Fig. 5. Crack propagation in Ni and Ni-Al metallic nanolayer (case 1)

Case 2: Maximum Strain (Cmax) = 0.057

The snapshot sequence of the crack propagation for the maximum applied strain Cmax of 0.057
during loading cycles of 3,7,9 and 10 for Ni and 2,3,4 and 5 for Ni-Al are shown in figures 6 and
7. With higher applied strain, the crack in both Ni and Ni-Al propagate by nucleation of voids in
the region near the crack tip. The enhanced plastic deformation at the higher applied strain leads
to nucleation of voids in the two systems. In Ni, the dislocations nucleate from the crack tip
during the 10' loading cycle as shown in Figure 6 (d) that travels away from the crack tip with
continued cyclic loading. In Ni-Al, when the crack reaches the interface during S''' cycle,

101

dislocations start emanating from the interfacial bi-Iayer and start traveling away from the
interface towards the bulk Al. Figure 7 clearly illustrates this behavior.

a) 3 cycles b) 7 cycles

::^

. 1

? ^^

■■"" '"^^'^ '*'*'*'*^-''^^i3af«u^

c) 9 cycles d) 10 cycles

Fig. 6. Crack propagation in Ni single layer (case 2)

The total crack length versus the number of cycles at two different values of the applied
maximum strains for both the Ni and Ni-Al are shown in figure 8. The crack in Ni propagates
faster when compared to the crack in Ni-Al. However, the crack in both the Ni and Ni-Al at
higher applied maximum strain (Cmax = 0.057) propagates slower when compared to its
propagation at lower maximum strain value of emax (0.046). The present study indicates that the
creation of voids at higher maximum strain loading slows down crack propagation in both the Ni
and Ni-Al.

102

fci-iipy

Fig. 7. Crack propagation in Ni-Al bilayer composite

•Oi)

3- «« • i(fj.»7

1 JW

1 409 ■

1 m -

V 109-
J^

/ /
/ ••■

 NiAIJOJ?

J^.--'

: -I (S S 19 U

Fig. 8. Crack growth comparison at two different values of maximum applied strain for Ni and
Ni-Al bilayer composite

A plot of crack length as it propagates dynamically under cyclic and tensile loading for both the
Ni and Ni-Al is shown in figure 9. During tensile loading, plastic deformation around crack tip

103

dominates crack propagation, resulting in slower crack growth when compared to the crack
growth under strain controlled (Cmax of 0.046) cyclic loading. The earlier nucleation of
dislocations from the crack tip during tensile deformation (at 29 ps), when compared to their
nucleation (at 189 ps) during cyclic loading slows down tensile Mode-I crack growth in Ni. In
Ni-Al, dislocations nucleate from the crack tip at around 26 ps, which retards crack growth and
prevent it from reaching the interface. Further discussions and details are presented in reference
63

'&)
,^.

t m ■ /

i $09 ■ /
I /

/
i iMH />CL^
'^ Z—
^ iw /

0 IM '

Si

^

20 m (n) ao

Fig. 9. Dynamic crack growth comparison under uniform tensile and cyclic loading (case 1) for
Ni and Ni-Al bilayer composite

CONCLUDING REMARKS

Nanoscale multilayer metallic composites (NMMCs) are of scientific and industrial interest due
to their unusual mechanical properties. In considering the structure of NMMCs and its impact on
strength and deformation, the role of interfaces becomes clearly paramount. Nanoscale
multilayer metallic composites contain extremely high densities of interfaces, and achieve very
high strength levels. Interfaces play a crucial role in determining material strength by acting as a
strong barrier to slip transmission. The influence of such interfaces on Mode-I crack propagation
in a nanoscale bilayer Ni-Al composite employing molecular dynamics (MD) modeling and
embedded atom method inter-atomic potential has been investigated and presented.

Results for Ni single crystal are in agreement with predictions given by Abraham, et al ^' for fee
solids with crack initially growing brittle and eventually undergoing a dynamic brittle-to-ductile
transition with a spontaneous proliferation of dislocations from the crack tip followmg a
roughening of the crack surfaces. Results for Ni-Al also showed an initial brittle crack
propagation with planar cleavage of atoms between the two neighboring (001) planes defined by

104

the initial seed crack and crack surfaces getting roughened when the crack propagation speed is
about one-third of the Rayleigh wave speed. As the propagating crack approaches the interface, a
small bud called the 'process zone' at the crack tip start interacting with interfacial defects that
eventually blunts the crack tip and ceases further crack growth.

For the case of cyclic loading, depending on the value of the applied maximum strain, crack
propagates either by fatigue cleavage of the atoms in the crack plane or by void nucleation in the

regions near the crack tip. In Ni-Al, as crack approaches the bi-metallic interface, dislocations
start emanating from the interfacial bi-layer. The presence of interface in the Ni-Al prohibit
crack from propagating beyond the interface. The creation of voids slows down crack growth in
both the Ni and Ni-Al at higher value of Cmax during cyclic loading. Plastic deformation
dominates crack propagation during tensile loading that result in slower crack growth, when
compared to the crack growth under cyclic loading. The earlier nucleation of dislocations at the
crack tip in Ni-Al prevents crack from reaching the interface during tensile loading.

In sunmiary, presence of semi-coherent interface in the nanoscale Ni-Al bilayer composite was
found to prohibit crack from propagating beyond the interface. An understanding of interface
effects on fracture on NMMCs is essential in forming a critical foundation for the development
of newer generations of nanoscale multilayer metallic composite structural materials with better
combination of properties.

REFERENCES

1. A. Misra, M. Verdier, Y. C. Lu, H. Kung, T. E. Mitchell, M. Nastasi and J. D. Embury,
Scripta Materialia 39 (4/5), 555 (1998)

2. B. M. Clemens, H. Kung and S. A. Bamett, MRS Bull 24,20 (1999)

3. A. MisraandH. Kung, Adv. Eng. Mater. 3, 217(2001)

4. M. A. Phillips, B. M. Clemens and W. D. Nix, Acta Materialia 51,3157 (2003)

5. A. Misra, H. Kung and J. D. Embury, Scripta Materialia 50, 707 (2004)

6. A. Misra, J. P. Hirth, R. G. Hoagland, J. D. Embury and H. Kung, Acta Materialia 52,
2387(2004)

7. A. Misra, X. Zhang, D. Hammon and R. G. Hoagland, 53, 221 (2005)

8. P. M. Anderson, J. F. Bingert, A. Misra and J. P. Hirth, Acta Materialia 51, 6059 (2003)

9. A. Misra, R. G. Hoagland and H. Kung, Philosophical Magazine 84 (10), 1021 (2004)

10. M. N. Baibich, J. M. Broto, F. Fert, V. D. Nguyen and F. Petroff, Phys. Rev. Lett. (61),
2472(1988)

11. C. Montcalm, B. T. Sullivan, M. Ranger, J. M. Slaughter, P. A. Kearney and C. M. Falco,
OPTICS LETTERS 19 (13), 1004 (1994)

12. W. Schwarzacher and D. S. Lashmore, IEEE TRANSACTIONS ON MAGNETICS 32
(4), 3133(1996)

105

13. S. PalDey and S. C. Deevi, Materials Science and Engineering A 342, 58 (2003)

14. A. R. Maligno, D. Whalley and V. V. Silberschmidt, Materials Science and Engineering
10,012087(2010)

15. E. Pellicer, A. Varea, S. Pane', B. J. Nelson, E. Mene'ndez, M. Estrader, S. Surin'ach, M.
D. Baro', J. Nogue's and J. Sort, Adv. Funct. Mater. 20, 983 (2010)

16. S. I. Rao and P. M. Hazzledine, Philosophical Magazine A 80 (9), 2011 (2000)

17. R. G. Hoagland, T. E. Mitchell, J. P. Hirtha and H. Kunga, Philosophical Magazine A 82
(4), 643 (2002)

18. A. Misra, J. P. Hirth and H. Kung, PHILOSOPHICAL MAGAZINE A 82 (16), 2935
(2002)

19. C. H. Henager Jr., R. J. Kurtz and R. G. Hoagland, Philosophical Magazine 84 (22), 2277
(2004)

20. R. G. Hoagland, R. J. Kurtz and C. H. Henager Jr., Scripta Materialia 50, 775 (2004)

21. A. Misra, J. P. Hirth and R. G. Hoagland, Acta Materialia 53 4817 (2005)

22. R. G. Hoagland, J. P. Hirth and A. Misra, Philosophical Magazine 86 (23), 3537 (2006)

23. F. Akasheh, H. M. Zbib, J. P. Hirth, R. G. Hoagland and A. Misra, JOURNAL OF
APPLIED PHYSICS 102, 034314 (2007)

24. M. J. Demkowicz, J. Wang and R. G. Hoagland, 14, 141 (chapter 83) (2008)

25. K. Al-Fadhalah, Phil. Mag. 85, 1419 (2005)

26. M. J. Demkowicz and R. G. Hoagland, Journal of Nuclear Materials 372, 45 (2008)

27. A. Misra, M. J. Demkowicz, J. Wang and R. G. Hoagland, JOM Journal of the Minerals,
Metals and Materials Society 60 (4), 39 (2008)

28. J. Wang, R. G. Hoagland, J. P. Hirth and A. Misra, Acta Materialia 56, 5685 (2008)

29. J. Wang, R. G. Hoagland, J. P. Hirth and A. Misra, Acta Mater. 56, 3109 (2008)

30. J. Wang, R. G. Hoagland and A. Misra, J Mater. Res. 23, 1009 (2008)

31. J. Wang, R. G. Hoagland and A. Misra, Scripta Materialia 60, 1067 (2009)

32. J. Wang and A. Misra, Current Opinion in Solid State and Materials Science 15, 20
(2011)

33. I. N. Mastorakos, H. M. Zbib and D. F. Bahr, APPLIED PHYSICS LETTERS 94,
173114(2009)

34. J. P. Hirth and X. Feng, J. Appl. Phys. 67, 3343 (1990)

35. J. McKeown, A. Misra, H. Kung, R. G. Hoagland and M. Nastasi, Scripta Mater 46, 593
(2002)

36. G.V.KurdjumovandG. Sachs, Z. Phys. 64, 325(1939)

37. R. Asaro, Advances in Applied Mechanic 23, (1983)

38. C. L. Kelchner and S. J. Plimpton, Physical Review B 58, 11085 (1998)

39. P. M.AndersonandC. Li, Nanostruct Mater. 5, 349(1995)

40. L. H. Friedman and D. C. Chrzan, Phys. Rev. Lett. 81, 2715 (1998)

41. H. B. Huang and F. Spaepen, Acta Materiaha 48, 3261 (2000)

106

42. P. M. Anderson and Z. Li, Mater Sci Eng A 319, 182 (2001)

43. Y. Shen and P. M. Anderson, Acta Mater 54, 3941 (2006)

44. J. D. Embury and J. P. Hirth, Acta Metall Mater. 42, 2051 (1994)

45. P. M.Anderson, T.FoeckeandP.M.Hazzledine, MRS Bull. 24,27(1999)

46. E. G. Fu, N. Li, A. Misra, R. G. Hoagland, H. Wang and X. Zhang, Materials Science and
Engineering A 493, 283 (2008)

47. S. N. Medyanik and S. Shao, Comput. Mater. Sci. 45, 1129 (2009)

48. S. Shao and S. N. Medyanik, Mechanics Research Communications 37, 315 (2010)

49. D. Saraev and R. E. Miller, Acta Materiaha 54, 33 (2006)

50. S. Shao and S. N. Medyanik, Modelling Simul. Mater. Sci. Eng. 18, 055010 (2010)

51. F. F. Abraham, D. Brodbeck, R. A. Rafey and W. E. Rudge, Phy. Rev. Lett. 73, 272
(1994)

52. T. Zhu, J. Li and S. Yip, Physical Review Letters 93, 025503 (2004)

53. H. V. S. D. Farkas, P.M. Derlet, Physical Review B 66, (2002)

54. J. F. B. R.E. Rudd, Comp. Mater. Sci. 24, (2002)

55. M. J. Buehler and H. Gao, Strength, Fracture and Complexity 3, 105 (2005)

56. K. Gall, M. F. Horstmeyer, M. V. Schilfgaarde and M. I. Baskes, Journal of Mechanics
and Physics of Solids 48, 2183 (2000)

57. D. Farkas, M. Willemann and B. Hyde, Physical Review Letters 94, 165502 (2005)

58. G. P. Potimiche, M. F. Horstmeyer, P. M. GuUett and B. Jelinek, Proceedings of the
Royal Society A 462, 3707 (2006)

59. G. P. Purja Pun and Y. Mishin, Philosophical Magazine 89, 3245 (2009)

60. S. J. Plimpton, Journal of Computational Physics 117, 1 (1995)

61. Y. Mishin, D. Farkas, M. J. Mehl and D. A. Popaconstantopoluos, Physical Review B 59,
3393 (1999)

62. Y. Purohit and R. Mohan, Molecular Dynamics of Crack Propagation in Nickel and
Nickel-Aluminum Bilmetal Interface. In International Mechanical Engineering Congress
and Exposition (IMECE), Americal Society of Mechanical Engineers, VanCouver,
Canada, (2010), Vol. IMECE2010-3 8677,

63. Y. Purohit and R. Mohan, Molecular Dynamics of Crack Growth in Nickel and Nickel-
Aluminum Bi-Metallic Interface System Under Cyclic Loading. In 2011ASME
International Mechanical Engineering Congress and Exposition, (ASME), A. S. f M. E.,
Ed., Americal Society for Mechanical Engineers, Denver, Colorado, USA, (2011), Vol.
IMECE 2011-65150,

64. Y. Liang, Q. Han and J. Ou, Journal of Computational and Theoretical Nanoscience 11,
71 (2014)

65. M. M. S. Fakhrabadi, B. Dadashzadeh, V. Norouzifard and A. Allavedizadeh, Journal of
Computational and Theoretical Nanoscience 10, 1921 (2013)

66. M. H. Msazadeh and K. Dehghani, Journal of Computational and Theoretical
Nanoscience 10, 1497 (2013)

107

67. M. Xiang, J. Cui, X. Tian and J. Chen, Journal of Computational and Theoretical
Nanoscience 10, 1215 (2013)

68> M. E. Kilic and S. Erkoc, Journal of Computational and Theoretical Nanoscience 10, 104
(2013)

6§. M. E. Kilic and S. Erkoc, Journal of Computational and Theoretical Nanoscience 10, 112
(2013)

70. N. Nouri and S. Ziaei-Rad, Journal of Computational and Theoretical Nanoscience 9,
2144(2012) ■ ^ ■ ,

71. R. Mohan, Y. Purohit and Y. Liang, Journal of Computational and Theoretical
Nanoscience 9, 649 (2012)

108

B: COMPUTATIONAL ENABLING TECHNOLOGIES

Section B focuses on the research activities related to the enabling technologies. In particular,
multi-scale modeling approaches are required to accurately capture the disparate length scale
effects in various engineering problems. Project work in this area focused on the coupled Lattice
Botlzmann and Navier Stokes modeling for flow problems in collaboration with University of
Alabama at Birmingham. Further developments in these concurrent coupled modeling
developments are needed. The present efforts are geared towards applications in understanding
the nano fiber, nano tube resin flow interactions in composites material processing. Due the low
length scale size of nano fibers in comparison to the resin flow domain, low length scale methods
in the vicinity of the nanofiber flow region and correlation with the macroscopic flow field.
Research and modeling investigations and modeling investigations comparing the Lattice
Boltzmann and Navier Stokes approaches are presented in the sub-section B-1.

High performance computing architectures are evolving over the years with the Graphical
Processing Units (GPU) are providing superior performances for computationally intensive
problems. Recent research efforts involved the porting and implementation of the computational
process flow process modeling developments on a GPU cluster are presented in sub-section B-2.

Physics based flow modeling provides an effective way to simulate the resin infusion process in
liquid composite molding processes for polymer composite structures. These are effective to
provide optimal injection time and locations for given process parameters of resin viscosity and
preform permeability prior to resin gelation. However, there could be significant variations in
these two parameters during actual manufacturing due to differences in the resin batches, mixes,
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for
permeability. Research to understand the influence of uncertainties in these parameters on the
resin infusion time was initiated via a probabilistic, non-deterministic modeling methodology
using deterministic resin flow modeling and statistical analysis are presented in section B-3.

B-1 Multi-Scale Simulation Investigations of Nanofiber Resin Interactions using
Lattice Boltzmann Equations and Finite Volume Methods

In collaboration with University of Alabama at Birmingham (UAB)
Authors: Y. H. Kim (UAB), R. Mohan (NCAT), R. Koomulli (UAB), B. Soni (UAB)

The orientation/distribution of carbon nanotube (CNT) and other nanofibers in polymer matrix,
one of main factors in manufacturing high-performance multifunctional composites, is an

109

important aspect to be considered during the development of new CNT composites with
enhanced mechanical, electrical and thermal properties. However, the disparate length scales
involved and mechanical properties of nanotube and rheological properties of polymer matrix
around CNT and nanofibers hinder researchers from elucidating the problem via computational
modeling. Understanding this problem requires a multi-scale computational approach. Different
computational solvers for each of these scales, bridging techniques between the solvers, and a
representative model of a carbon nanotube/nanofiber are needed for the simulation of this class
of multi-scale and multi-disciplinary problems.

Project efforts towards this objective focused on 1) the coupling of a macro-scale solver,
HYB3D, and a meso-scale solver. Regularized Lattice Boltzmann (LB) equation solver, for
computational fluid dynamics, 2) the generation and analysis of a representative volume element
for CNT using elastic theories and ANSYS as computational structural dynamics code, and 3)
the handling of moving boundaries in lattice cell for fluid structure interaction using simple
standard bounce-back boundary schemes. A 3D flow past a circular cylinder is simulated using
Bhatnagar-Gross-Krook dynamics and regularized LB methods as a demonstration of the LB
method. The comparison of the results between two models (macro finite volume solver HYB3D
and meso solver LB) demonstrates that the regularized LB method can be used for coupling
meso-scale and macro-scale solvers.

Recently, carbon nanotubes (CNT) are used as filler in polymer composites because of its
dramatic physical properties including mechanical strength [1-3], electrical conductivity and
capacity [4], and thermal conductivity [5]. These remarkable properties make CNT as one of the
most promising reinforcing materials in the fabrication of advanced polymer composites [6-9].
Although the properties of CNT polymer composites [1-9] and micro scale fiber behaviors in
graphite composite manufacturing [10-13] has been reported in the literature, the orientation and
configuration of CNTs in a polymer resin flow during the manufacturing process have rarely
been studied. This is due to the requirement of a comprehensive analysis of fluid structure
interaction (FSI) between CNTs and polymer, interaction between CNTs, and electrical/chemical
interactions that need to be considered in the experimental and computational approaches for the
analysis of this problem. The limitations of experimental facilities and approaches to study this
multi-scale problem lead researchers to investigate computational simulations. Researchers have
developed numerical schemes on the multi-scale simulation methods for suspension flow,
models for CNTs using elastic theories, and numerical methods for handling of moving
boundaries in FSI for solving these types of problem.

Typically, the orders of magnitudes of length and time scales in CNT composite simulations can
span fi-om 5 to 12. Even with the recent advanced computer systems and algorithms, it is
impractical to analyze the phenomena of CNT composites with computational simulation using a

110

single scale due to the wide span of these length and time scales. Inevitably, multi-scale methods
are required to overcome this problem. These multi-scale computational methods can be
categorized into two groups: sequential method and concurrent method. The sequential method
involves critical information pass from a lower length scale (for example, molecular scale) to a
higher length scale (for example, macroscale). This method is a proper approach when an
effective model in molecular scale can entirely be employed for input parameters in the
continuum constitutive model. Thus, this method can be applied to analyze polymer composites
which usually consist of fluid (polymer matrix) and solid (fillers). The concurrent method
involves direct coupling between different scales. This is an appropriate approach when
important atomic scale phenomena are focused on localized space, such as at a crack tip, grain
boundary, or nano-indender [14].

The sequential multi-scale method is a proper method for CNT polymer composites. The main
barrier in this method is the development of an efficient and accurate way of bridging different
scales. The micro scale methods for bridging nano to micro scales include Brownian dynamics
(BD), Dissipative particle dynamics (DPD), Lattice Boltzmarm (LB), Time-dependent Ginzburg-
Landau (TDGL), and Dynamic density functional theory (DDFT). Due to the range of scales in
time and length of CNT composites during process flow interactions is limited to micro and
macro scales, molecular effects are neglected in the present study.

Brownian Dynamics (BD) [15] employs an implicit continuum solvent description instead of
explicit solvent description in molecular dynamics (MD) by assuming no internal motions of
molecules. This assumption allows much larger time order than that of MD. Therefore, the BD is
proper method incorporating slow suspension flow of mixed polymer and solvent including fast
motions of solvent molecules. Due to the approximation of the fast degrees of freedom by
fluctuating forces in BD, the energy and momentum is not conserved. This non-conservation
causes consequently the composite system not to be hydrodynamic in macroscopic scale. Thus,
this BD method carmot be bridged with the Navier-Stokes equations.

Discrete Particle Dynamics (DPD) [16] is a particle-based method like MD. DPD handle the
particle at micro scale different from MD at molecular scale. The potentials between particles are
approximated in DPD using simple order basis function at microscopic length scale. The

conserved force and momentum at micro scale enable this method to incorporate hydrodynamic
equation such as Navier-Stokes equation at macro scale. The energy, however, is not conserved
in this method due to the presence of dissipative and random forces.

LB [17] method is originated from discretized, simplified and fictitious molecular dynamic
lattice gas automation. This method is usually employed to investigate phase separation of binary
fluid in the existence of filler particles in polymer composites. An important advantage of LB

111

method is that the interactions between particles at micro scale can easily be incorporated into
numerical model such as Navier-Stokes equations at macro scale. In the LB method, particle
occupation variables are replaced by single-particle distribution functions. In addition, individual
particle motion and interaction between particles in the kinetic equations are neglected. This
assumption causes this method to be numerically unstable and consequently may lead to
unreasonable physical results in the case of high force interaction between particles.
TDGL generalized Cahn-Hilliard-Cook nonlinear diffusion equation for a binary blend into
phase-field and reaction-diffusion between blended polymer and fillers [18]. By minimizing free-
energy function in this method, time-dependent structural evolution of the blended polymer is
investigated. A simplified version called cell dynamic method, of the TDGL method has been
developed by Oono et al. [19] by replacing Laplacian term with isotropic discrefized counterpart.
Both methods have been recently and widely used to analyze the phase-separation of
nanocomposites [20-22].

DDFT method integrates Gaussian mean-field statics into TDGL method to model the behavior
of polymer fluid implemented in Mesodyn^*^ from Accelrys [23]. The integration enables this
method to employ numerically full polymer path without truncating fi-ee energy at a certain level.
In addition, this method has a capability of simulating viscoelastic properties of polymer fluid.
Of all these different methods, LB method has been widely used for simulating particles/fibers in
suspension flows because of the ease of generation of the mesh, data locality for parallelization,
flexible boundary conditions, and noise-free solution. Ladd [24, 25] provided theoretical
foundation and applications of a general technique for simulating solid-fluid suspension via
discrete Boltzmann equation. Lallemand and Luo [26] developed an LB method for moving
boundaries for analyzing moving cylinder in a transient Couette flow. Lee-Edwards boundary
conditions for sheared suspension flow in LB method were used by Lorenz and Hoekstra [27] to
capture shear-thickening behaviors. Also, particle-particle interactions in shear flow were
analyzed using a chain like cluster of suspended particles by Hyvaluoma et al. [28]. Joshi and
Sun [29] developed multiphase LB method for particle suspensions. Ramachandran et al. [30]
developed an LB model for suspensions of self-propelling colloidal particles via active particle
with velocity field. While aforementioned models/schemes are applied to rigid bodies, Wu et
al.[31, 32], MacMeccan et al. [33], Buxton et al. [34], Lorenz et al. [35] and Dupin et al. [36]
simulated deformable particles using schemes for LB method to handle moving boundaries
(fluid-solid interface) and/or models for representing particles/fibers.

The schemes for handling FSI interface due to the deformable or moving rigid particles/fibers
have been investigated and reported in the literatiare. The bounce-back scheme for no-slip
velocity boundary conditions at walls has been most widely used due to ease in implementation,
although the scheme has only a first order accuracy at the boundaries [37, 38]. This simple
boundary scheme is used to analyze fluid flows in complicated geometries such as flow through

112

porous media, flow around high curvature boundary, etc. This mismatch in the order of accuracy
in the LB method degrades the accuracy of entire results [33, 34, 36]. For more accurate results
in the complex geometries, the method has been improved using interpolation schemes including
spatial linear [39], quadratic [40], and multi-reflection [41] methods. Wu et al. developed an
immersed boundary LB scheme [31] and external boundary force [32] on the interface between
fluid and structure without the interpolation schemes.

To model the micro or nano structures in polymers, researchers have used several representative
models ranging from simplified models such as spring models [34, 36] to equivalent-continuum
approach (ECA) or self-similar approach (SSA) [42-44] combining with MD to consider local
interaction loading forces between molecules by their potential energies including covalent bond
stretching, bond-angle bending, and Van der Waals interactions. The foundation of ECA is to
develop a representative volume element (RVE) at macroscopic length scale to statistically
represent the local interaction between microscopic elements. The RVE has been developed
ensuring that the element length scale is consistent with the smallest constituent that covers the
RVE continuum behavior properly. The developed RVE is then used iteratively or periodically
at macro scale. The RVE models have usually the following basic assumptions: (a) linear elastic
properties, (b) the identical fillers in shape and contents, (c) no slip, crack and de-bonding
between polymer matrix and fillers. Based on these assumptions, the RVE is described as multi-
material elements using volume fraction. The Halpin-Tsai [45] and Mori-Tanaka [46] models are
widely used in polymer composites for this method in micro scale. These RVE models have
expanded to nano scale modifying the basic assumptions. Li et al. [47] studied CNT epoxy
composite strength using Halpin-Tsai and Mori-Tanaka models. Gao and Li [48] developed a
shear-lag model to predict the interfacial stress of CNT composite using RVE. Liu and Chen
[49,50] employed FEM and boundary element method (BEM) to study CNT composite using
RVEs containing CNTs modeled as thin elastic layer for short CNT or an open cylinder for long
CNT. Liu et al. [51] recently developed BEM models combined with a new cohesive interface
model with MD and analyzed Young's modulus of CNT composite. Tserpes et al [52] employed
a multi-scale RVE to investigate the effect of interfacial shear strength on the tensile behavior of
CNT composites. Pantano et al. [53] studied the effect of CNT curvature and interface
interaction with polymer matrix on composites using RVE and FEM.

From the literature search, it was concluded that the Lattice Boltzmaim (LB) method is suitable
for the modeling of micro-scale behavior and continuum modeling is suitable for simulation
mean suspension flow. Based on the conclusion, the OpenLB for LB method and HYB3D for
continuum modeling were chosen. The sequential multi-scale coupling method of two solvers
was chosen and the part of coupling procedures involving mesh generation, code modification
and development for space and time synchronization has been implemented. The governing
equation of HYB3D was studied to find out the passing parameters for the coupling procedures

113

with OpenLB and the brief introduction of the code was introduced. The validation of PoisseuUe
flow through square duct was shown in the last annual report with an LB solver and an in-house
Navier-Stoke (NS) solver to couple the meso-scale LB and macro-scale NS solvers. The results
showed good agreement with the analytical solution. In the coupling procedures of two solvers,
the distribution fiinction updated by moving boundaries in OpenLB is related to passing
parameters. In the present project work, the validation of flow past moving cylinder in a channel
flow at rest was performed using a moving boundary algorithm. The results from fixed frame
showed lots of fluctuation, which may be caused by taking averaged values of the nearest nodes
in the extrapolation of distribution function from solid to fluid region due to the moving
boundaries. To remove the fluctuation, the other methods for the extrapolation schemes could be
used.

Lattice Boltzmann Method

The LB equation has been originated from lattice gas (LG) automata employing a
discrete kinetics with a discrete lattice and time or expansion of the continuum Boltzmann
equation with a discrete set of velocities for small Mach number [1]. Frishch et al [2] found LB
equation to be turned into NS equation using Lattice Bhatnagar-Gross-Krook (BGK), Chapman-
Enskog expansion, which is a formal multiscaling expansion method.

In this sector, the details of derivation of LB equation from lattice gas automata. Lattice
BGK from LB, and NS equation from LB equation within small Knudsen and Mach number will
be described.

Lattice Boltzmann Equation from Lattice Gas Automata

Let's define a set of Boolean variables 5i(x,t) (i = 1, ..., N), describing the particle
population function on nodes of lattices, where N is the number (6 in hexagonal lattice in Figure
1) of direction of the discrete velocities at each node. The evolution equation of LG automata
can be written as:

5,(x + e„t + l) = 5,Cx,t) + fii(5i(x,t)), (i = l,-M. (1)

where e^ are the local particle velocities, Qj is a collision operator. The movement of particles in
the evolution can be separated into streaming (propagation) and collision phases. The major
disadvantage of using LG automata method for macroscopic flow applications is the occurrence
of the statistical noises at each node, which has almost no effect on dynamics of the flow and
could be prone to lead divergence of solution in hydrodynamic problems. For solving these
problems, LB method have been developed using the averaged velocity distribution function,
which represents each group of particle movements by neglecting the individual particle
movements and interaction between themselves. The LB equation can be written with lattice

114

units (lattice space (&x) and time (At) increments are set to be unitary) by replacing Eq. (1) with

fi = (3i}, where (> denotes an ensemble average operator, and /^ =/j(x,t) is the averaged
velocity distribution function:

/,(x + ei,t + 1) - /,(x,t) + n,C/,(x,t)), (i - l,-,Nl (2)

Figure 1. A particle population function on a node of hexagonal lattices

Lattice Bhatnagar-Gross-Krook (BGK) from Lattice Boltzmann Equation

If fluid has long wave length and low frequency properties (small Knudsen number)
which can be covered by averaged velocity distribution function, the Ax and At in Eq. (2) can be
considered as small parameter s. The left hand side of Eq. (2), then, can be expanded using
Taylor expansion series in time and space to second order in e:

5£t
at
g + V-e,/i+i.(w:e,e,/: + 27-e,f + ^)=^ (3)

Similarly, the averaged distribution fimction /^ can be defined as:

fi^fr+^fr" (4)

where, f^'^ is denoted as an equilibrium distribution function, and J^"^"^ is defined as a

nonequilibrium distribution function which can be expanded by low Mach number expansion [1]
as:

4^''^ = 4»+E//^U0(s2) (5)

where, the superscripts of /; are the order of the Mach number expansion.

115

To linearize the collision operator O,, after inserting /j in Eq. (4) into H,, it can be
expanded with Taylor series as:

When £ goes to the zero asymptotically, Eq. 6 can be written as:

"^^{fi-f-^ (7)

where Mj^-= ——— is called as the collision matrix [3], which represents the scattering rate

between two arbitrary directions i and j. In the collision, mass and momentum should be
conserved so that My should satisfy following equations

E^iM,^=o (8)

S^iM,^e, = 0 (9)

Assuming My is relaxed to an equilibrium state at a single rate x, iW^is expressed as:

1
M,, = --/ (10)

where, I is identity matrix. The new defined U^ also should satisfy Eq.'s (8) and (9), then

consequently local equilibrium of macroscopic parameters involving density p and momentum
; = pu, should be conserved as:

P = iIUfi (11)
/=S;^i/^e, (12)

In addition, similariy, the Qj = n,(/j(x,t)) needs to satisfy conservation of total mass and

momentum at the local lattice as follows:

i:flifi= = o (13)
Sf^in,e, = 0 ., (14)

Inserting Eq. (10) into Eq. (7), the lattice Bhatnagar-Gross-Krook (BGK) collision term [4] are
derived as:

116

M£5^^_i;--^^ (15)

and the lattice BGK equation with Eq. (15) is defined as;

/,Cx + e,.t+l)-/,(x,t)-^^^ (16)

Navier-Stokes Equation from Lattice Boltzmann Equation

The formal multiscaling expansion, Chapman-Enskog is required to derive a macroscopic NS
equation from LB equation, assuming that the time scale t^ is much smaller than time scale tj [5].
The expansion of time and space derivative is written as:

Using low Mach number expansion used in Eq. (5), the collision operator H,- can similarly be
expanded as:

Qi = sOj^^ + s^af + 0(ff3) (19)

Applying the above expansions to Eq. (6), then the scale separated version of the equation with
neglecting 0{£^} is obtained as:

Eflr+.^iir = i. ,. "^\. "'= ,_ nfr+^rr) (20) ' i I 1 2 9 . 7 5 1

Considering collision operator works only on f^^^ in Eq. (13), Eq. (11) can be written as:

P = i.%^n=i^^f:'' (21)

Eq.'s (11) and (13) play an important role in leading LB to NS equation. Expanding Eq. (13) on
two different orders E and e^ in Eq. (20), the following equations are given as:

Sflin^^^~E^,r' + ^i-S^ie.r-^P+Vi-i™ = o (22)

117

and

1 a^ .a
= ^P + Vi-iW+i^p + ^V,-j(°)+iv,V,:n(°) + ic|¥^p^O (23)

where, c^ is defined as a sound speed, and

n = S;1i(eiej-c20/i (24)

To eliminate second order derivative of time, insert Eq. (22) into Eq. (23), and then the following
equation is obtained as:

Ap + v^.^(l)+i_Lv,.;(0)+iVi?i:nW+ic^v2p^0 (25)

In order to remove the second order time derivative of density, introduce a source term F = sF
and put it into Eq. (14).

S';iin,e, =F (26)

Due to the source term, a correction term should be added to momentum as:

/=Sfli^e,= Sflir'ei-f (27)

Extracting terms for 0{s) from Eq. (26), then

S^ie,0«=^Efl,e,r+V,-S^,e.e,r = ^i(«+V,.n(«+c|V,p^iv«(28)

Now, terms for 0{s^) in. Eq. (25) can be evaluated using Eq.'s (27) and (28) as:

Ay^. jm ^ 7^. p^) _y^^^^ n(tQ _ ^2v|p (29)

Vi-J« = -^Vi-F (30)

Inserting above two equations into Eq. (25), finally the equation is obtained as:

118

This equation forms the mass conservation equation of NS equation eliminating ts time scale
firomEq. (21) as:

±p + Vj = G (32)

Extracting terms for 0{E^) from Eq. (26), then

where the tensor R^ is nonlinear deviation term [6].

Using Eq. (28), the second order time derivative of zeroth-order of momentum can be written as:

^,(0)._?.(^(x)_,^.n(0)-c|V,p) (34)

Inserting the equation into Eq. (33) and using Eq. (30), and then Eq. (33) can be simplified as:

^jW+Vi- nW+i^7,-nW + ic|^V,p+^?iV,:4« = 0 (35)

To make momentum conservation equations, solve Eq. (26) combining Eq.'s (28) and (35):

1/0) +y.^n + dp/+^(l-(nco) + c^pi) + ?i ■ fl(°))^ = F (36)

The terms of Eq. (36) can be matched with macroscopic momentum equations such as: nt"^ is

identified with puu , cipl with p! by ideal gas law, and the remaining 0(s^') terms with -x . For
example, let's take two-dimensional lattice with nine velocity vectors which has origin ei(0,0) in
Figure 2, which is easy to understand mathematical manipulating instead of three-dimensional
model. Chen et al. [7] formulated the general form of equilibrium distribution function, which
has the error 0{u^), as:

f*'^=pta + &ei-u + c(eru)2 + du2] (36)

119

where, a, b, c, and, d are unknown constants with the assumption of small Mach numbers.
Satisfying Eq.'s (11) and (12), the unknown constants can be analytically found as [8]:

f^'^^poii^l + 3ei ■ u + ^(e, -uj^-|u2] (37)

where, <yi=4/9, £i>j=l/9 (i = 2,4,6,and 8),and «i=l/36(i = 3,5,7,and 9) which are determined to

accomplish isotropy of the fourth-order tensor of velocities and Galilean invariance [9].

Figure 2. A two-dimensional lattice with nine velocity vectors

Inserting the above equation into Eq. (36) and solve it, and finally the NS momentum equation
are obtained as:

3u
it + ? ■ uu = - [-?p + vV ■ (¥pu + Vpu)] (38)

where, p = p/3 is defined as the pressure, which provides a sound speed, Cg =^ l/v3by ideal gas
law, and v = (2T —1)/6 is denoted as the kinematic viscosity.

Regularized Lattice Boltzmann

Before going to the details of the regularizafion procedure [10] of LB, let's recall original
LB equation, Eq. (2)

fiix + ei,t + 1) = /^(x,t) -t-n^(/f(x,t)), (i = 1,-,N'}

The dynamics of particles in the LB equation can be split into two steps: 1) collision step, 2)
stream step (propagation step). The former calculates the new outgoing particle parameters from

120

incoming ones by the relation j;°^* = ^"^ + 0;(/j(x,t)), and the latter propagate incoming

particles along the lattice velocity ej by the relation f^^ (x + ej,t + 1) = j^°"*. Let's define IT as
momentum flux tensor as:

f!.^ ^if^X^ia^ipfi (39)

where, e^a, is the component of the velocity vector e^ in a-coordinate direction. Using the BGK

equation, Eq. (16) for modeling dynamics of particles in LB equation, the distribute functions /j
can simply be defined as:

n = C+f"^ (40)

and then the momentum flux of nonequilibrium part of the distribution fimctions is calculated as:

KT=^-i^-^'^=i^ia^i^fr (41)

By cancelling higher order contributions from CE expansion to BGK dynamics to comply with
their 0(e) hydrodynamic values, the nonequilibrium part of the distribution function can be
expressed as:

m ^ //'^ = - TT (J^ia^m - ciO V.pu. (42)

, and then the momentum flux of nonequilibrium part is calculated as:

n^7^«S':iie,e,e,^4^'^--Tc|(¥„pu, + Vppu^) (43)

Combining Eq's (42) and (43), the regularized nonequilibrium part of the distribution
function can be simplified as:

ri'^=3^(^i^^^0-'5On:p (44)

This equation provides regularized distribution functions, /^'^*'* = /^^'^(p,u) +/^^ that possess the

required symmetries for lattice BGK model.

Moving Boundary in Lattice Boltzmann Method

To handle moving boundaries in LB method, which is required to analyze the interaction
between a representative model for nanotube and polymer, the method developed by Lallemand
and Luo [11] has been employed in OpenLB code. The brief description of the method is
described and the implementation procedure in OpenLB is explained.

121

Moving Boundary Algorithm

The moving boundary algorithm proposed by Lallemand and Luo [11] is based on the quadratic
interpolation and bounce-back scheme on curved boundaries. The bounce-back scheme is
implemented with the assumption that the interface boundary between two different materials
(ex.: solid and fluid) is located on the half-way in a cell. The challenge is how to solve moving
interface not located on the half-way in Figure 3. A particle, x is located on r, in the Figure, is
considered in one direction along one velocity vector in Figure 2. Let's define q, the distance
between the interface boundary and a closest fluid node, which is normalized to 1. In addition,
consider a moving wall located at an arbitrary position Vw between two nodes, rj and r^, where rj
is located on the fluid region and r^ on the moving solid.

a) ^ < 0.5

-Ot-

moving wall

^-4

b) ^>0.5

^.

„ moving wall
l< X ■*,

Figure 3. Two cases for moving interface bolindary in the lattice used in LB method

For the case of ^ < 0.5, the distribution function, j^ (r,, t), where the under bar of i, one velocity
vector, denotes inverse direction to the vector, can be interpolated before propagation and
collided. The distribution function can be written as [11]:

fiirp t) = g(l + 2q)l(rp t) + (1 - Aq^jKrf.t) - g(l - 2q)fXrf,t) + 3w, (e, • u^) (45)

where ^ is the distribution from the previous time (before propagation), and u^ is the wall
velocity.

For the case of g > 0.5, the distribution function, ^z (r,, t), can be interpolated after propagation
and collided. The distribution function can be written as [11]:

/.C-)'') = Slii7)K'5'') -^/ih'.') -iSiiMo".') +sS('' ■"-' "o^
(2q-l)

q4

The last term, !Wj(ej-u^) in Eq's (45) and (46), describes the momentum due to interaction
between fluid and solid introduced from the mass and momentum conservation.

122

Since propagation in time is the same as movement from a location to next to the location in
space, the Eq's (45) and (46) can be also written as:
For the case of ^ < 0.5,

fi{rj,t) - gCl + 2q)fi{r^ + e^Ku) + (1 - ^^')fi{rj,t) - g(l - 2q}fi{rj - Bi&l,t) + Soj^Cej- u^)

(47)

For the case of ^ > 0.5,

(48)

Implementation of Moving Boundary Algorithm in OpenLB

To implement the moving boundary algorithm in OpenLB, the hierarchical data structure of
OpenLB has been analyzed to touch the distribution flinction and get momentum introduced
from fluid structure interaction. For the distance q, bisection method has been employed.

General setup for stationary fluid dynamics in OpenLB

To simulate stationary fluid dynamics in OpenLB, the following setup is required.
a. Define flow parameters involving Reynolds number and lattice velocity.
b. Define boundary and initial condition
c. Define termination criteria.
d. Define flow field with object region in the lattice using 0 and 1 representing flow and

object, respectively
e. Choose the model for flow dynamics involving "BGKdynamics",

"MomentumExchangeBounceBack", "ExtemalMomentBGKdynamics", and etc.
f Initialize distribution fiinction and collide and stream until the given termination criteria

The modification of the general procedure is required to implement the moving boundary
algorithm.

Modification of general setup for moving boundary algorithm in OpenLB

To simulate moving boundary algorithm in OpenLB, the following setup is required.
a. Define flow parameters involving Reynolds number and lattice velocity.
b. Define boundary and initial condition
c. Define termination criteria.

123

e.

f.

Define initially and update flow field with object region in the lattice using 0 and 1
representing flow and moving object, respectively

Choose initially and update the "MomentumExchangeBounceBack" model for moving
object and "BGKdynamics" for flow region.
Initialize distribution function and collide and stream initially once,

g. Find the distance q using bisection method and update distribution function using Eq's
(47) and (48)

The modification of the general procedure is required to implement the moving boundary
algorithm. In the several model of dynamics of distribution function in OpenLB, a
"MomentumExchangeBounceBack" class is chosen for defining solid regions to get momentum
on the interface boundaries between fluid and moving solid objects.

Distribution function update in OpenLB

The final step in the previous section has been implemented modifying codes in OpenLB. The
bisection method [12] was used to obtain the distance q. Flow direction information was
extracted in the "dynamic" class in OpenLB to find neighboring distribution function and get the
value in the function along the flow direction. This procedure was performed using follow steps.

a. Find interface cell between fluid and moving solid object using the dynamic model
information.

b. Get the flow directions in the "dynamic" class in the found interface cells
c. Get the distances using the bisection method.
d. Get the index of neighboring distribution function and needed values of the ftmction
e. Update distribution function on moving boundary using Eq's (47) and (48) with the

obtained values in previous steps.
f.

Two dimensional flow past a moving cylinder

Two dimensional flow past a moving cylinder eccentrically located in a channel has been
simulated to validate the moving boundary algorithm using the two frames of reference. One is
the moving frame with a fixed cylinder. The other is the fixed frame with a moving cylinder.
The boundary and initial conditions listed in Table Iwere setup to make the relative motion
between the cylinder and the flow in the channel the same in either frame.

Table 1. Different setup conditions for the flow past a moving cylinder

Moving Frame Fixed Frame

Inlet Constant Pressure Constant Pressure

outlet Outflow Outflow

124

Side Wall Moving and no-slip No-slip and no-movement

Cylinder Fixed Moving

The Reynolds number for this simulation is taken as 200. The height and length
dimension of the channel is 1 and 10 respectively. The initial velocity is 0.0 in the moving frame.
The side walls are moving with -0.04 velocity. In the fixed fi-ame, the cylinder is moving with
0.04 velocity. All movement is only along x-direction. The cylinder has 0.12 radius. It is located
on (6.6, 0.54) in the moving frame and (0.6, 0.54) in the fixed irame, as shown in Figure 4. The
contour plots of velocity in x-direction in both trames are shown in Figure 5. The velocity in x-
direction in moving fi-ame is shifted by 0.04 to compare the results with those in fixed frame.
The results from fixed frame showed lots of fluctuation, which may be caused by taking
averaged values of the nearest nodes in the extrapolation of distribution fiinction from solid to
fluid region due to the moving boundaries.

Moving wall

o
Moving wat

10

a) A cylinder in moving frame

O

b) A moving cylinder in fixed frame

Figure 4. A cylinder in a channel with different frames

a) A cylinder in moving frame

-28

-
 ofl'*

% o
"'b

osa

%

002

,
0

J •=! 1=. -, -, .-^ N '> i T- => Q A> f'h . -=.) ,^^ J'-^ .-■, ,1^ ,..-?' - —^ 1 -

125

b) A moving cylinder in fixed frame

Figure 5. Contour plot of flow velocity in x direction

References

1. He X., and Luo L-S., "A priori derivation of the lattice Boltzmann equation," Physical
Review E, Vol. 55, 1997, pp. 6333-6336

2. Frisch U., d'Humieres D., Hasslacher B., Lallemand P., Pomeau Y., and Rivet J-P., "
Lattice gas hydrodjTiamics in two and three dimensions," Complex Syst.,Vo\..\, 1987, pp.
649-707

3. Higuera F.J., and Jimenez J., "Boltzmann approach to lattice gas simulations,"
Europhysics Letter, Vol. 9, 1989, pp.663-668

4. Bhatnagar P.L., Gross E.P., and Krook M., "A model for collision processes in gases. I:
small amplitude processes in charged and neutral one-component system," Phys. Rev.,
Vol.94, 1954, pp.511-525

5. Frisch U., Hasslacher B., and Pomeau Y., "Lattice-gas automata for the Navier-Stokes
equations," Physical Review Letter, Wo\.56, 1986, pp. 1505-1508

6. Qian Y.H., and Orszag S.A., "Lattice BGK models for the Navier-Stokes equation:
nonlinear deviation in compressible regimes," Europhys. Lett. , Vol. 21, 1993, pp. 255-
259

7. Chen H., Chen S., and Matthaeus W.H., "Recovery of the Navier-Stokes equations using a
lattice-gas Boltzmann method," Phys. Rev. ^.,Vol.45, 1992, pp. R5339-42

8. Qian Y.H., d'Humieres D., and Lallemand P., "Lattice BGK models for Navier-Stokes
equation," Europhys. Lett., Vol. 17, 1992, pp. 479-484

9. Qian Y.H., "Lattice gas and lattice kinetic theory applied to the Navier-Stokes equations,"
PhD thesis. Universit'e Pierre et Marie Curie, Paris, 1990

10. Latt J., and Chopard B., "Lattice Boltzmann method with regularized pre-coUision
distribution functions," Ma//?. Compiit. Simulat. , Vol. 72, 2006, pp. 165-168

126

11. Lallemand P. and Luo L-S., "Lattice Boltzmann method for moving boundaries," Journal
of Computational Physics, Vol. 184 , No. 2, Jan. 2003, pp. 406-421

12. Burden R. and Faires J.D. , "2.1 The Bisection Algorithm, " Numerical Analysis (3rd ed.),
PWS Publishers, 1985

127

B-1 APPENDIX-I
Preliminary Results

The main sections discussed the theoretical and mathematical formulations related to the Lattice
Boltzmann simulations and their relation to the macroscopic flow variables. Preliminary
computational investigations that were performed in the project efforts to understand the usage
and behavior of Lattice Boltzmann method for flow problems are presented next. Classic flow
configurations in 2D and 3D geometrical configurations are the preliminary test simulations
investigated.

Lattice Boltzmann Simulation

OpenLB Test Cases

A Lattice Boltzmann simulation solver, OpenLB, has been downloaded to simulate two cases for
multi-scale simulation to verify whether the open source code works in the UAB Linux-cluster
system. The fu-st case is a flow around a 2D cylinder inside a channel, which produces a von

Karman vortex street. The Reynolds number for this simulation is taken as 400 and the
geometry used for this simulation is illustrated in Figure 1. The captured pictures of the flow
development from the simulation are shown in Figure 2. The simulation took about 23 minutes
of CPU time.

i

1

1

() 1 0.25

i
-^ ».

6 n
Figure 1: Geometry used for flow past a cylinder using Lattice Boltzmann equation

128

■MtlHli itm

Figure 2: Von Kamian Vortex Street past a Cylinder by Lattice Boltzmann Equation

The second test case is a driven cavity flow. The geometry for this problem is a square cavity
with upper surface moving at a constant speed. The Reynolds number for this problem is set to
100. The captured pictures of the animation of the energy contour from the simulation are shown
in Figure 3.

The third test case is a flow past a 3D cylinder has been simulated by LB using BGK dynamics
and regularized LB methods. The dimension of geometry is illustrated in Figure 6. The mesh was
constructed using a template "CylinderShaeDomain3D()" in OpenLB, which is modified based
on a built-in template "CylinderShaeDomain2D()". The resolution was set to 101 nodes along
each direction. The Reynolds number for this simulation is taken as 400. The velocities at the
top, bottom, and side walls were set to zero, the velocity at the outlet was extrapolated fi-om the
inside, and the velocity at the inlet was set based on the Poiseuille profile.

129

•

-^

Figure 3: Energy contour of driven cavity flow by Lattice Boltzmaim equation

Figure 4: Dimension of cylindbr and far-field domain for 3D cylinder simulation

The velocity distribution, velocity vectors, and streamlines predicted by the LB method using
BGK dynamics and regularized LB method are shown in Figures 5-7. The velocity vectors and
the traces are colored based on the velocity magnitude (blue color represents lowest velocity and
red color represents highest velocity). In Figure 5, the maximum velocity from Regularized LBE
shows good agreement with LBE using BGK with 0.28% error and the distributions at two cross
sections are almost the same. Each simulation took about 29 days using 16 processors. The good
agreement between both methods as shown in Figures 5-6 indicate that the Regularized LB
method can be substituted for LB method using BGK dynamics for easily coupling between LB
and NS solvers.

130

a) Velocity from LBE using BGK b) Velocity from Regularized LBE

Figure 5: Velocity distributions from LBE using BGK and Regularized LBE

a) Particle traces from LBE using BGK b) Particle traces from Regularized LBE

Figure 6: Particle traces from LBE using BGK and Regularized LBE

a) Velocity vectors from LBE using
BQK b) Velocity vectors from Regularized LBE

Figure 7: Velocity vectors from LBE using BGK and Regularized LBE

Navier-Stokes Simulation

We have simulated a laminar flow over a cylinder using the continuum approach via a
UAB in-house finite volume code, HYB3D. The Reynolds number for this simulation is taken
as 335.51. A cross-sectional view of the mesh and pressure distribution on the surface of the

131

cylinder are shown in Figure 8. The pressure distribution, velocity vectors, and streamlines
predicted by the Navier-Stokes simulation are given in Figures 9-11. The velocity vectors and
the streamlines are colored based on the velocity magnitude (blue color represents lowest
velocity and red color represents highest velocity). In all these plots the cylinder is colored
based on the pressure distribution.

Figure 8: Cross-sectional view of the mesh for HYB3D

Figure 9: Pressure distribution by HYB3D

132

(a) Overall view

I';

p^

S

I-'

(b) Upper end of the cylinder

(c) Middle section

Figure 10: Velocity vectors by HYB3D

133

(a) Overall view

(b) Near the end

Figure 11: Streamlines by HYB3D

134

B-1 APPENDIX-II

(Project Results)

PoisseuIIe flow simulation for validation of OpenLB and HYB3D codes

Before the validation of coupling scheme between two solvers, the validation of each solver
should be carried out. Therefore, the validation of each solver has been conducted by PoisseuIIe
flow through a square duct. The results show good agreement with analytical solution. This
procedure provides the important information involving unit coincidence of parameters requiring
for time and space synchronization, boundary conditions, initial conditions, and required input
parameters for each solver.

PoisseuIIe flow through square duct

PoisseuIIe flow through square duct has been analyzed for the validation of two solvers, OpenLB
and HYB3D. The Reynolds number for this simulation is taken as 100. The air dynamic
viscosity is 1.5e-0.5 kg/m*s. The height and length of square duct is 0.01m, and 0.05m,
respectively. The initial velocity is 0.15 m/s at the inlet. The analytical equation for this flow can
be written as

''=]^(-£)s.,,....(-i)<'-«Mi coEh(t-ity/2a)

cosh(™/2)
cos(JiTy/2a)

(1)

where, —a <y < a, and a is defined as one half of height.

Computational setup for PoisseuIIe flow

Computational setups for the flow through square duct have been established for two solvers.
Geometrical information for the square duct and physical condition for the flow was fitted into
computational parameters as listed in Table 1. The required boundary and initial condition and
the others to get results for each solver are listed in Table 2. The different mesh densities were
employed to check the sensitivity of the mesh density to the computational results.

Table 1. Fitted conditions and geometry information for PoisseuIIe flow simulation

Physical value LBE HYB3D

Re 100 100 100

Initial Velocity 0.15 m/s 1 1

dynamic viscosity 1.5e-05kg/m*s N/A N/A

135

Height of square duct 0.01 m 1 1

Length of square duct 0.05 m 5 5

Time N/A Depends on
mesh

Depends on mesh

Table 2. The boundary conditions and mesh quality for Poisseulle flow simulation

LBE HYB3D

Inlet Inflow (velocity) Inflow (velocity)

outlet outflow Outflow (pressure)

Side Wall No-slip No-slip

Mesh quality 20, 60, 80 (Height) 30, 50, 60 (Height)

Biasing for viscous layer No Yes

Parallel Processing No Yes

Mesh generation

The flow domain through squared duct is automatically discretized to uniform hexahedral
elements by OpenLB and elements in different sizes were generated manually for HYB3D using
HyperMesh3D. Three different meshes for each solver have been generated and the total
numbers of elements and nodes used in the meshes are described in Figure 1.

^^!^>^^E^»^-"'-"

40,000 elements, 44,541 nodes 90,000 elements, 97,601 nodes

136

1,080,000 elements, 1,120,021 nodes 500,000 elements, 522, 801 nodes

2,560,000 elements, 2,630,961 nodes

a) OpenLB

1,440,000 elements, 1,492, 121nodes

b) HYB3D

Figure 1. Three different meshes used in OpenLB and HYB3D for PoisseuUe flow simulation

Velocity profile of PoisseuUe flow through square duct

Velocity distribution and contour lines at the cross section in the middle of duct along length
direction (x coordinate) are shown in Figure 2. For these results, the convergence history for both
solvers is shown in Figure 3. OpenLB requires maximum 3,000 iterations for getting convergent
solution, while HYB3D requires maximum 1,500 iterations. Comparing three results from

OpenLB, the result obtained from the simulation with 40,000 elements show different velocity
profile from the others. However, the results irom HYB3D show good agreement each other.
This indicates that the mesh with 1,080,000 elements for OpenLB and the mesh with 500,000
elements for HYB3D are good enough to get accurate results. The velocity contours and contour
lines at the different cross sections along height direction (y coordinate) are shown in Figure 4.
The results show that the sensitivity of the mesh density to velocity profile has similar trends as
the velocity profile does along length direction. Figure 5 shows the velocity on the center line
along length direction for both solvers. The plot in Figure 5 shows clearly the sensitivity of mesh
density to the results.

To validate the results from two solvers with analytical solution using Eq. (49), the root mean
square (RMS) errors on the cross section at x = 4.9 along height direction are calculated and
shown in Figure 6. The surface plot and contour lines of the errors are shown in the Figure. The
RMS errors are not small enough to show good agreement with analytical solution. The
nonlinear velocity in Figure 3 indicates the 5 length is not enough to remove the entrance effect,
so that the simulation has been implemented for the other lengths such as 10 and 20 lengths.
The results with 10 length show the length is still not enough to get rid of the entrance effect as
shown in Figure 7. The results with 20 lengths provide acceptable RMS errors as shown in
Figure 8.

137

2,560,000 elements
a) OpenLB

1,440,000 elements
b) HYB3D

Figure 2. Velocity contours and contour lines at the cross section in the middle of duct along
length direction of OpenLB and HYB3D codes

> 10"" Convergence History

 40,000 elements
 1.080.000 elements
 2.560.000 elements

1.2
■

E» "" 1
lU i
■u 0.8 HI

; „„i yyft„-_.

0.4 r ■

0.2
■

0 2 4 6 8 10 12 14 16
Iteration

Convergence History

-90,000 elements
-500,000 elements
-1,440,000 elements

4000 6000
Iteration

8000 10000

a) OpenLB b) HYB3D

Figure 3. Convergence history for all meshes used in OpenLB and HYB3D

138

x = 2.5 x = 4.5
- ■ -^

, - ■
x = 0.5

"~i

■ H

x = 2.5 x = 4.5

40,000 elements

1,080,000 elements

2,560,000 elements

c) OpenLB

90,000 elements

B
500,000 elements

m
1,440,000 elements

d) HYB3D

Figure 4. Velocity contours and contour lines at the cross sections (x = 0.5, 2.5, and 4.5) along
height direction of OpenLB and HYB3D codes

139

2.2
Velocity on the center line along x direction

1.6-

1.4

1.2

^

-^-^

/

 40,000 LBE
 1,080,000 LBE
 2,560,000 LBE
 90,000 HYB3D
 500,000 HYB3D
 1,440,000 HYB3D

-

/

1 1 1 1

-

2 3
X

Figure 5. Comparison of velocities from OpenLB and HYB3D codes on the center line along
length direction

RMS = 0.0160

RMS = 0.0167

" J^*^^"

RMS = 0.0177

a) OpenLB

T^lM

■:A

RMS = 0.0203

RMS = 0.0201

RMS = 0.0168
b) HYB3D

1

Figure 6. RMS errors at the cross section, x = 4.9 along height direction of OpenLB and HYB3D
codes

140

'-mi

.0.003,- «""00«8 g1

■•«

i

1 '

1

0.004-
0.009--

0 0 ai 02 0 3 ,...0.4 ...0.5:, 06 0.7 0 8

Figure 7. RMS errors at the cross section, x = 9.95 along heigtit direction of OpenLB

=; i . if C £ .

- vr 1 Ki

Q J02
0^004 -,

>. 1. " " "-,")i

0004
') r-04

n 1 >2

RMS = 0.0036
Figure 8. RMS errors at the cross section, x = 18 along height direction of OpenLB

Coupling OpenLB with HYB3D

Mesh generation

The coupling of OpenLB and HYB3D is carried out using the geometry sketched in Figure 9.
The inside cubic region shown in yellow is solved using OpenLB and the rest of the domain is
solved using the continuum approach. The spatial discretization of the OpenLB is carried out
automatically using the built-in ftinctions. The mesh for the continuum domain is generated
using HyperMeshSD. The surface nodes from the OpenLB are taken as the interface nodes for
the continuum domain as shown in Figure 10. From the surface mesh, 25 boundary layers with a
growth rate of 1.2 and an initial thickness 1 .Oe-05 are generated for viscous layer on the walls.
The cross section view of the generated tetrahedral volume mesh in the middle of square duct is
shown in Figure 11. The total number of tetrahedral elements for the continuum domain is
1,327,000. A zoomed-in view of the interface region is shown in Figure 12.

141

Figure 9. The location of interface and interface (yellow) between OpenLB and HYB3D

Figure 10. Mesh on surface for HYB3D with interface nodes (gray) for OpenLB

Figure 11. Volume mesh on the cross section in the middle of square duct for HYB3D

142

Figure 12. Zoomed interface for OpenLB in the volume mesh for HYB3D

143

B-2 Physics Based Modeling and Simulation on Graphical Processing Units
(GPUs) - Porous Media Flow in Liquid Composite Molding

Authors: R. Haney and R. Mohan, North Carohna A&T State University

Architecture-Performance Interrelationship Analysis in Single/Multiple
CPU/GPU Computing Systems: Application to Composite Process Flow
Modeling

Abstract

Current developments in computing have shown the advantage of using one or more Graphic
Processing Units (GPU) to boost the performance of many computationally intensive
applications but there are still limits to these GPU-enhanced systems. The major factors that
contribute to the limitations of GPU(s) for High Performance Computing (HPC) can be
categorized as hardware and software oriented in nature. Understanding how these factors affect
performance is essential to develop efficient and robust applications codes that employ one or
more GPU devices as powerful co-processors for HPC computational modeling.

The present work analyzes and understands the intrinsic interrelationship of both hardware and
software categories on computational performance for single and multiple GPU-enhanced
systems using a computationally intensive application that is representative of a large portion of
challenges confronting modem HPC. The representative application uses unstructured fmite
element computations for transient composite resin infusion process flow modeling as the
computational core, characteristics and results of which reflect many other HPC applications via
the sparse matrix system used for the solution of linear system of equations. This work describes
these various software and hardware factors and how they interact to affect performance of
computationally intensive applications enabling more efficient development and porting of High
Performance Computing applications that includes current, legacy, and future large scale
computational modeling applications in various engineering and scientific disciplines.

144

CHAPTER 1

Introduction

Recent years have seen the slowing of computational intensity offered by standard
Central Processing Unit (CPU)-based systems, while scientific/engineering applications have
inexorably grown in the need for computational power [1-3]. As the CPU approached maximum

power sustainability around 2003, growing from \watt I cm' to IQwatts I cm^ \^, 4], the
Graphics Processing Unit (GPU) was increasing its computational intensity while maintaining
efficient power management [5, 6] and lowering cost to meet the high demand placed upon it
from a thriving game industry [1, 2, 7]. The differences in CPU and GPU computational power
can be traced back to the designs upon which the two are predicated - i.e., Instruction-Stream
Based (ISB) and Data-Stream Based (DSB) models.

1.1 Background and History

The ISB design of the CPU, whereby a single stream of instructions and data are fed to
the device, limited any optimization of arithmetic operations since the input stream could contain
any number of potentially complex instructions. Therefore, the CPU accomplished the
mitigation of latency by defining elaborate memory caches where processes could be switched
out when needed, such as with an I/O interrupt, constraining larger numbers of transistors to the
Memory Management Units (MMU) and logic device arrays [2, 8, 9] for complex operations
such as speculative branching [10-12]. In comparison, the DSB design of the GPU, with
instructions and data fed to the device as separate streams, could optimize for arithmetic
operations as the instruction stream is committed prior to any data input. Therefore, the GPU
accomplished mitigation of latency by pushing as many processes as possible through the device
at any given time, conscripting large numbers of transistors for floating-point operations and
assumed large arrays of uninterrupted data streams via a wide data bus [2, 8]. The DSB and ISB
paradigms define the framework upon which the present computational architectures and
software designs for the CPU and GPU have evolved (see Figure 1).

1.1.1 CPU-GPU hardware parallelism.

The CPU computing architecture, as per the ISB model, allowed for the maintenance of
increasingly complex processes [9, 13], the execution of which is physically and logically
defined by the concept oi pipelines. CPU pipelines are constructs which consist of stages of
processing elements executed in a series - each output of a stage is the input to the next [9, 13].
This single pipeline evolved to the more efficient multiple pipelines [9, 13], eventually leading to
super-scalar systems [14] and vector processing machines [15] in an effort to maximize
hardware oriented computational power for the CPU-only computing architecture.

145

Data-Stream Based

(1.) Instructw/ts ^

(2.) Data
^

Memory 1

Instruction-Stream Based

Instructions \
+ Data ~~^

Memorj-

Figure 1. The general models followed by the GPU (left) and CPU (right).

Both the vector processing machines [14, 16, 17] and super-scalar systems [9, 14] increase the
computational power of CPU-only computing architectures using a low-level hardware defined
parallelism but take different routes to achieve this goal. The super-scalar system defines
hardware parallelism via execution of multiple operations per clock cycle augmenting the system
with large numbers of registers [9, 14], whereas the vector processing machine implements
common operations across multiple data elements [14, 16, 17]. Vector processing machines,
such as the CRAY [18] and the NEC SX-8 [19], obtain magnitudes of speedup over scalar
systems by pushing vector elements onto a special register known as a pipe and then execute
operations across these elements simultaneously [14, 15]. These CPU architectural designs
evolved to coerce a parallelism that is intrinsically and naturally present in the GPU device
architecture.

Initially computer graphics were defmed as simple vector devices executing as a separate
process using Direct Memory Access (DMA) to bypass frequent interrupts to the CPU [9, 13],
but as the GPU matured into a dedicated device it was fi-ee to optimize for throughput, as per the
DSB model. The larger concentration of transistors in the floating-point operations coupled with
a wide data bus produced the computational intensity for which the GPU computing architecture
is widely reputed [20-23] - large numbers of data input is executed simultaneously by
preconfigured floating-point operations [2, 8, 24]. The execution of floating-point operations
across the set of data input is physically and logically defined by the construct of a graphics
pipeline (see Figure 2 and Figure 3).

-^ Wrtcx IV.xrcssor ^ Kiisterizer

Fra^inciit Piwc-sx^i'

Frame Buffer
Texture Memory

146

Figure 2. Generic graphics rendering pipeline

P2

0

■ ■ ■

.a ■ ■ ■ 9-..

.\ ■
V O «

t ^ ^-•:^

y ̂ . ■ y
P ■ ■ ■

'j

(a) Input Vertex Coordinates (b) Create Primitive (Triangle) (c) Kasterized

Figure 3. Rasterizing a simple triangle.

The graphics pipeline construct is a feed-forward system [24] designed to perform operations on
four fundamental entities for final rendering by the display device - vertices, primitives,
fragments, and pixels [2]. Initially these fundamental entities were defined wholly within a
fixed-pipeline [1, 2] but evolved to become a mix of fixed and programmable sections
represented by an interleaved series of fixed functions and programmable stages across which
the data entities flow [1, 2]. Vertex generation is a fixed fiinction and is the first step in the
graphics pipeline, generating a series of vertices using lists of descriptors from the graphics
application [2]. The output vertices from the vertex generation function are passed to the
programmable stage of vertex processing, generating sets of vertex records independently from
each vertex - projecting the original 3-coordinate system to a 2-coordinate system [2]. The input
vertices are grouped next into an ordered stream of primitives by the fixed function, primitive
generation and then passed to the programmable stage of primitive processing - potentially
merging multiple primitives for rendering [2]. The modified primitives are passed to the
fragment generation fixed function, producing fragment records that are interpolated from
samples of the input and passed to the programmable stage, fragment processing [2, 24, 25].
The fragment processing programmable stage simulates the interaction of light and surface with
the input fragment records - textures are defined at this stage as 1-D, 2-D, or 3-D arrays [2, 24,
25]. The fma\ fixed function, pixel operations are next and calculate output pixels for rendering
using the input fragment's screen position [1, 2, 7, 24, 25].

The software paradigms have also developed conjointly with the architectures for both
the CPU and GPU devices - the two modes evolving as emphasis on higher performance and
ease of development have matured.

1.1.2 CPU-GPU software parallelism. The CPU-only software paradigms have evolved
along two general modes to increase computational ability- threaded and message passing [15,
22, 26-28]. The former defines a methodology that concurrently runs independent threads of
execution within a single address space [26] and the latter uses message constructs to

147

communicate and pass data with different processors [26, 28]. These CPU-only software
paradigms denote paralleHzation as a means of boosting apphcation performance - a common
practice in HPC appHcations that has historically been efficacious [26, 28-30].

The actual implementations of the threaded and message passing systems is defined by
several standards, libraries and/or specialized languages that include Unified Parallel C (UPC),
OpenMP, PThreads, Parallel Virtual Macliine (PVM), and Message Passing Interface (MPI)
among others [26, 28, 29]. Flynn's Taxonomy categorizes the threaded paradigm into the Single
Instruction Multiple Data (SIMD) and the message passing paradigm into the Single Program
Multiple Data (SPMD) as the threaded mode requires a lockstep synchronization in a shared
memory context and the message passing mode can operate in a distributed memory context with
varying degrees of autonomy [26, 28].

The GPU software paradigms, unlike the CPU counterparts that explicitly sought to boost
performance via parallelism, evolved out of a need to render specialized visuals for graphics
heavy applications e.g. high demand games [1]. Once the graphics pipeline became flexible,
allowing programming of the vector and fragment processors, an efficient set of software
constructs for rendering advanced 3-D visuals was needed and shader languages and libraries
were developed, so called because the graphics programs generally were written to shade
fragments of a given rendered object [24, 31], and included the first portable library - Silicon
Graphics ubiquitous OpenGL [1, 7, 32]. OpenGL was a watershed moment in graphics
programming as now applications no longer had to be written specifically for a given
architecture and/or operating system, rendering and manipulating primitives using sets of matrix
operations that included transformation, translation, rotation, and scaling [33, 34].

The OpenGL graphics library was written as an extension of the C language and is built

using a basic 4-element vector [x, y, z, w} such that if w = l the vector defines a position in space

and if vv = 0 it is a defined direcfion [24, 34, 35]. These basic 4-element vectors describe a

homogeneous coordinate system with the w element allowing translation and rotation, building

into a series of 4x4 matrices that can be modified simultaneously with a single formula [1,2, 24,
35]. Figure 4 depicts a 16-element operational matrix used by OpenGL such that the 12"', 13"^,
and 14' elements are the translation components - i.e. M03, Mu, and M23 in the figure.

^00 ^01 ^02 ^03

Ko M,, M,^ M,,

M^ M,, M^ M^
A/30 M,, M^ ^33

148

Figure 4. An example 4-by-4 matrix utilized by OpenGL.

Figure 5 shows a generic 2-D translation of a simple rectangle that occurs after applying
translation elements to each of the vertices - done simultaneously by the execution of a
translation matrix similar to the model shown in Figure 4.

Figure 5. Vertex point P is shifted left and down with translation values.

The OpenGL library defines the matrices as column-major order rather than row-major
but this essentially makes no difference as pre-multiplying with row matrices is the same as post-
multiplying with column matrices [33, 34].

The advent of OpenGL provided a boost to graphics programming itself, accessing the
growing computational power afforded by the GPU for non-rendering purposes was still
hindered by the tedious and difficult mappings required by the library. The release of Nvidia's
Compute Unified Device Architecture (CUDA) in 2007 marked the beginnings of General
Purpose GPU (GPGPU) computmg as it is known today [7, 25, 36]. The CUDA API uses C
language bindings to access underlying system calls to the GPU processors and embraces the
familiar concept of threading. CUDA utilizes a GCC-like compiler, NVCC, to compile the GPU-
bound code to low-level Parallel Thread execution (PTX) virtual machine and Instruction Set
Architecture [37, 38]. PTX provides a machine independent architecture for CUDA compilers to
target and allows for portability across multiple GPU generations [37, 38].

Computational modeling and simulations in many fields require both hardware and
software compatibility and influence the resultant computational performance [20, 23, 25, 39-
41]. The factors that influence the computational performance can be categorized as software

and hardware oriented, each category can be fiirther demarcated as computational algorithms
and data-structures/layouts under software; and architectural designs for single and multiple
CPU/GPU under the hardware category.

149

1.2 Focus and Objective

The focus and objective of this dissertation is to analyze and understand the intrinsic
interrelationship between the computing hardware architecture and software variables on the
performance of the single and multiple CPU/GPU computing systems shown schematically in
Figure 6. These analysis and discussions are based on computationally intensive, unstructured
finite element computations for transient composite process flow modeling application. The
discussions are organized into single CPU/GPU and multiple CPU/GPU systems. The reminder
of the dissertation is presented and organized into chapters as outlined next.

Data-Structiires/ y — f Computational
Layouts />j —■ ^', .Algorithms

/ Architectural \ ,
\ Desigas) \

Figure 6. Schematic representation of the interrelationship of computational performance.

Chapter 2 defines the computational problem analyzed and provides key computationally
intensive kernels, associated algorithms, and software data-structures/layouts, as well as the
hardware descriptions. Chapter 3 establishes the computational potential of the GPU via the
analysis and discussion of a key component of many computationally intensive applications - the
sparse matrix-vector multiplication. The performance metrics and results as well as the software
data-structures and architectural factors that influence the performance are presented. Chapter 4
focuses on the full-solution for the candidate application defining key computationally intensive
kernels and associated developments such as data-structures/layouts for the single CPU/GPU
computing system. The computational performance as it relates to the architecture and software
relationship is examined and discussed in this chapter. Chapter 4 will also discuss the hardware
architectural factors and problem size and how these work to influence computational
performance. All these factors are considered in the development of an empirical computational
complexity relationship that will then be correlated to the results and parameters to understand
how these factors influence the performance. Chapter 5 is essentially the same as chapter 4
excepting for the use of a multiple CPU/GPU computing systems - defining the relevance of
these systems for multiple processor designs. Finally, chapter 6 is a summary of the results and
analysis as well as proposed future directions for CPU/GPU and hybrid computing systems.

150

This last chapter will establish the interrelationship between software-hardware variables on

computational performance and how these findings can be applied to many computationally
intensive engineering and scientific applications, not just the candidate application employed in
this work.

CHAPTER2

Computational Problem - Candidate Application

This chapter describes the computationally intensive physical problem employed as a candidate
application for analysis and discussion of computational performance factors - Resin Transfer
Molding (RTM) process and the transient process resin infusion flow modeling [30, 42, 43].
This candidate application presented employs unstructured finite element computations,
assembling sets of locally defined stiffness matrices into a single global stiffness matrix [44],
that is sparse, symmetric and positive-definitive [44, 45]. The global sUffiiess matrix composed
of finite element computations, is solved at each time-step during resin infusion flow analysis
using the iterative Preconditioned Conjugate Gradient method [46] rather than a direct solver
such as LU-Decoraposition which is computationally prohibitive for most non-trivial problems
[44, 45].

The computational model configurations for computational performance analysis built
upon finite element meshes employed by the computationally intensive candidate application
increase in the problem size based on the 3-noded triangular element and node count but are
consistent in geometry and parameters applied - i.e., both mesh models have the same physical
descriptions of resin infiision flow modeling excepting size. These meshes, ordered by increasing
element/node, are shown below - Figure 7 is representative of both mesh configuration
employed in the resin flow infusion modeling analysis for the candidate application.

Unstructured Mesh Number of Nodes Number of Elements

MA 26,936 53,178

MB 103,196 204,970

The finite element models defined by meshes MA and MB are consistent in geometry
and physical problem parameter input therefore for exhaustive purposes another, less regular,
mesh is analyzed for performance behavior and is denoted as lOFT - shown below is the number
of nodes/elements for this model mesh configuration. The lOFT unstructured mesh falls roughly
into the category of medium-sized computational problem with respect to the other two meshes
studied in this research and is composed of 3-noded triangular elements; however, it is more
complex in structure. The lOFT unstructured mesh model is shown in Figure 8.

151

Unstructured Mesh

lOFT

Number of Nodes

29,171

Number of Elements

58,187

Figure 9, Figure 10, and Figure 11 show plots of the non-zero element sparsity pattern of
matrices that result from the input meshes MA, MB, and lOFT respectively. Clearly meshes
MA and MB are more regular than the matrix from mesh lOFT, which is though diagonally

dominant and symmetric, has non-zero elements dispersed more evenly across the entire matrix.
All algorithms referenced in this chapter are presented in Appendix C of this dissertation

for convenience and better formatting of text.

3-nodect triangular elements *r y C ' ^

unstructured mesh

Figure 7. Unstructured mesh geometric configuration used by candidate application.

3-nodcd triangular doaents

imstnictiireid mesh

Figure 8. Unstructured mesh geometric configuration of lOFT model.

152

•

*.

\

Nonzeros = 474912 (0.065%)

Figure 9. Sparse matrix non-zero entry distribution for mesh MA.

Nonzeros = 1773270 (0.017%)

Figure 10. Sparse matrix non-zero entry distribution for mesh MB.

153

Nonzeros = 582101 (0.068%)

Figure 11. Matrix sparsity pattern of mesh lOFT.

2.1 Physical Description

The Resin Transfer Molding (RTM) process flow modeling methodology studied is
based on the work published in [30, 43, 47] and is presented briefly next.

2.1.1 Resin Mass Conservation. Following the discussions in [30, 43, 47], the resin flow
through the fiber preform contained within the mold cavity is represented by the transient mass
conservation equation. The physical mass conservation equation (formed by coupling the mass
conservation equation with the momentum equation via Darcian velocity field) is given by

equation (2.1) with i^the permeability tensor, //the resin viscosity, Pthe pressure field, and

T the state variable representing the infiised state of the resin - further details are available in
[30, 43, 47].

d_

dt
^"VdCl^y VP do. (2.1)

The value of the state variable ^ is 0, where the resin has not infused the fiber preform, and 1,
where the resin has completely infused the fiber preform in any given region of the Eulerian
mold continuity domain Q used in the Finite Element Method (FEM) computafions.

As discussed in [43] the application of Galerkin weighted residual formulation and
approximating for the pressure P and fill factor T, with appropriate elements and associated

shape functions, yields a semi-discrete system of equations given by equation (2.2) with C the

154

lumped mass matrix representing pore volume, K the stiffness matrix, q the load vector, and 4^

the time derivative term.

CP + K P = q (2.2)

The transient semi-discrete equation is then solved by introducing the finite difference
approximation given by equation (2.3).

U/n+l _ Vl/n

4' = (2.3)
At

2.1.2 LCM Solution Strategy The semi-discrete equation (2.2) can be reduced to the

equation (2.4) as discussed in [43], with C taken to be the lumped mass matrix.

C,%"''-C,^;+AtK,.P.=Atq, (2.4)

The above form of the discretized equation is solved by the LCM process flow simulation
algorithm at each time-step. Equation (2.4) defmes the implicit form of the process flow
modeling in LCM detailed in [43]. The generalized algorithm for the finite element
approximation of the process flow modeling for each time step is summarized in Algorithm 2.1 -
the interested reader is referred to [30, 43, 47] for fiirther details on the LCM process and its
conversion to the Finite Element Method formulation for the computational simulation.

2.2 Key Computationally Intensive Functions

Examination of Algorithm 2.1 reveals the most computationally expensive fimction of
the candidate application - the solution to the system of linear equations given in matrix form as

Ax = b embodied on line 9 as _Kij _|^ [Pj |^ = {g. }^^. The solution to systems of linear equations

can be accomplished via direct methods or iterative methods - each has advantages and
disadvantages.

Direct solution methods such as LU-Decomposition provide a solution in a single direct
solution step for the linear equation system without a need of initial guess solution vector but
require high computational costs whereas iterative methods start with an initial guess that
iteratively converges to a solution vector but have significantly lower costs [45]. The candidate
application presented executes this solver within a nested loop so any incurred costs from a

single call to the solver will be exacerbated by the product of {KXL) with AT the number of

iterations for mass-convergence and L the number iterations for all nodes to be determined as
filled - in addition to the iterations for the convergence of the iterative solution . The
Preconditioned Conjugate Gradient (PCG) iterative solver was selected as a balance of
computational cost and accuracy for the solution of linear system of equations.

2.2.1 The Iterative Solver. The PCG iterative solver chosen for the candidate application
provides good balance of computational cost and solution accuracy, composed of a set of matrix-

155

vector operations [44, 46]. The majority of the computational cost of the PCG iterative solver is
well documented as the Sparse Matrix-Vector (SpMV) multiplication [17, 46, 48-51] - this
operation is shown on lines 6 and 9 of Algorithm 2.2. The SpMV operation has high
computational cost due to three performance issues - poor locality, poor instruction mix, and a
high memory overhead [45, 52]. Poor locality of SpMV results from indirect and often irregular
memory accesses, poor instruction mix is derived through the execution of three memory loads
for every two floating-point operations, and the high memory overhead is due to the largest
portion of the matrix being zero and thus useless to the computation but held in memory
regardless. The high memory overhead of this candidate application, and indeed any application
that builds large sets of sparse matrices, is defined as a memory-bound problem and requires data
compression data-structures/layouts to execute [30, 44, 48].

There are different compression formats that are used to execute memory-bound
problems and a discussion of these follows.

2.3 Data-Structures/Layouts

One of the most common form of data compression for sparse matrix data structures used
in engineering/scientific application codes for High Performance Computing (HPC) is the

Compressed Sparse Row (GSR) structure which is partly due to its ease of programming [52-
54]; however this is not the only model to follow and much research has been done to explore
this area as the format used can have significant impact on the resulting performance [44, 49,
52]. The CSR data compression format consists of three arrays - non-zero data elements,
column indices, and row pointers, and operates by iterating over all the rows of the compressed
sparse matrix (see Figure 12). Each row is represented as the length between each non-zero
element held at the row pointer index currently being iterated over, which is then passed as an

input to the column indices array resulting in the original {row, column) position of the element

from the original sparse matrix - now held as an array of non-zero elements [52].

Algorithm 2.3 is the expression of the sparse matrix-vector multiplication using the CSR
data compression format [48, 52]. The utilization of the CSR compression format lowers the
memory overhead for the sparse matrix-vector multiplication but does nothing for the other two
components that effect performance, e.g. locality and instruction ratio - line 9 of Algorithm 2.3
embodies an operation that is deleterious to any locality and does not improve the instruction
ratio.

The Block Compressed Sparse Row with 2x2 (BCSR2x2) sub-blocks has been shown
to improve the often disappointing performance of the CSR by increasing locality via reduced
number of memory loads [21, 52, 55], however this improvement is not guaranteed. BCSR2x2
operates on sets of sub-blocks of dimension 2x2 rather than single elements, but locality is only

156

improved if the original sparse matrix is composed of dense sets of sub-blocks; otherwise
memory overhead is increased with no corresponding performance boost (see Figure 13).
Determination of these dense sub-blocks of the sparse matrix is not known until runtime, making
this a dynamic problem.

initial matrix
17 0 0
0 2 0 0
0 0 3 9
0 0 0 4

2 3 9 4 non-zeros

h
|0| 1| 1| 2|3|3| column indices

0 2 3 5 6 row pointers

Figure 12. The CSR format.

initial matrix
17 0 0
0 2 0 0
0 0 3 9
0 0 0 4

1 7 2 |3 9 4 non-zeros

\ /

^

0 2 column indices

k^ 0 0
0 0 rS™^

_o 0 [o 4jJ £

IT
0 2 row pointers

^

Figure 13. The BCSR2x2 format.

2.4 Hardware Discussions of Computing Architectures Used

The GPU, CPU code developments from the present work for the candidate application is
executed within the context of two separate computing machine architectures generally
categorized as CPU-based, GPU-based, and/or some combination of the two. Biomedical
Analysis and Simulation Supercomputer (BASS) located at Chapel Hill, North Carolina is
categorized as System A for the remainder of this dissertation, and system called as OAKLEY
located at Ohio Supercomputing Center in Columbus, Ohio is categorized as System B for the
remainder of this dissertation. The System A CPU/GPU computing system is composed of
AMD Dual-Core Opteron CPUs and Nvidia Quadro FX 5600 GPUs each with a 2.8 GHz and 1.5
GHz clock frequency respectively. The System B CPU/GPU computing system is composed of
Intel Xeon X5650 6-Core CPUs and Nvidia Tesla M2070 GPUs each with a 2.66 GHz and 1.15
GHz clock frequency respectively. The details of the hardware designs for both computing
systems are discussed next - categorized separately by CPU and GPU.

157

2.4.1 CPU Hardware Architectures The CPU hardware designs for System A and
System B follow the same concepts, but System B is more advanced (see Table 1 and Table 2).
These architectures both have multiple levels of cache memory, 2 levels for System A and 3 for
System B, and different capacities [56, 57]. System B has greater cache memory capacity at all
levels, and while both computing systems have the same memory I/O width. System B has faster
memory devices - double that of the memory devices for System A [56, 57].

Both System A and System B have embraced the concept of multiple core architectures,
but as with the memory structures System B is the more advanced of the two. A processing core
can be viewed as a separate CPU executing in the same address space enabling the computing
architecture to theoretically increase computational ability [9, 13], each core operates at a global
clock frequency for the device - System B executes 6 processing cores whereas System A has 2
[56, 57]. System A executes these cores as a higher clock frequency but System B has three
times the number of cores - a faster design for the hardware level.

Table 2
System A - CPU hardware architecture

Processor Clock 2.8 GHz
Processing Cores 2

LI Cache 256 KBs
L2 Cache 2MBs
Memory I/O 64-bit DDR2 SDRAM

Table 3 ,
System B ~ CPU hardware architecture

Processor Clock 2.66 GHz
Processing Cores 6
LI Cache 384 KBs
L2 Cache 1.50 MBs
L3 Cache 12MBS
Memory I/O 64-bit DDR3 SDRAM

2.4.2 GPU Hardware Architectures. The GPU hardware designs for System A and
System B follow the same concepts, but System B is more advanced (see Table 3 and Table 4).
These architectures both have processing cores in the hundreds to accommodate the massive
computational power involved in optimizing throughput, however System B has more than three
times the number offered by System A [58, 59]. System A has a faster clock frequency for each
processing core but has a significantly lower number of these cores so the aggregate power of
System B is greater regardless [58-61]. Each of these cores can be viewed as a separate

158

processor, but unlike the CPU, the GPU will execute the same instruction for all input until a
reconfiguration occurs for the next large set of input [31, 35] hence less emphasis on memory
management via cache hierarchies.

Both System A and System B have wide memory I/O at 384-bits to sustain the high
number of processes required to maximize throughput as a latency mitigation strategy prescribed
by the DSB paradigm which the GPU follows. The memory device employed by System B uses
the same input width but is faster than that of System A [58, 59, 61].

System B is part of the CUDA Compute Architecture 2.0, a metric used by Nvidia to
categorize the device versions at both the software and hardware levels, whereas System A is 1.0
- a significant difference [37, 62]. The higher Compute Architecture of System B allows more
options, e.g. Nvidia set of libraries, and System B was the first GPU device to fully embrace
general programming on the GPU (GPGPU) as it contained no video outlet, had double-precision
abilities, and provided Error-Correcting Code (ECC) [25, 37, 62]. The GPU device architecture
for System B is superior to that of System A.

Table 4
System A - GPU hardware architecture

Processor Clock 1.35 GHz
Processing Cores 128

Memory I/O 384-bit GDDR3
Register Count 8,192
Shared Memory Banks 16

CUDA Compute Architecture 1.0

Table 5
System B ~ GPU hardware architecture

Processor Clock 1.15 GHz

Processing Cores 448

Memory I/O 384-bit GDDR5

Register Count 32,768
Shared Memory Banks 32

CUDA Compute Architecture 2.0

2.4.3 Hardware Design Summary The hardware designs for both systems presented
reflects the general concept of the DSB and ISB paradigm for the CPU and GPU respectively
resulting in different latency mitigation policies. Both System A and System B utilize cache
memory hierarchies to mitigate latency for the CPU designs and both have processing core

159

counts in the hundreds to optimize throughput for the GPU designs, as per DSB paradigm. The
memory I/O bus width is higher for the GPU hardware than for the CPU hardware, while they
are equal in size to one another - System B has a faster memory device in both cases. System B
is a more advanced hardware design for both the CPU and GPU devices in context of processing
and memory. The next chapter will discuss the computational potential offered by the GPU via
performance of the highest cost operation of the candidate application, as well as many HPC
scientific and engineering computational modeling applications [20, 30, 48, 49, 63], the sparse
matrix-vector multiplication.

CHAPTER 3

Computational Potential of GPU - Sparse Matrix-Vector Multiplication

This chapter focuses on the computational potential offered by the GPU for
computationally intensive applications such as the candidate application presented. The
candidate application has highest computational cost at the point of the solution to system of

linear equations that are presented in matrix form a%Ax = b. This sparse matrix system is solved

iteratively using PCG in deference to the computationally prohibitive costs of using direct solver
methodology - a common practice in HPC modeling applications [20, 30, 48, 49, 63].

The PCG solver is composed of matrix operations that should map well to the GPU
device given it was created to execute massive numbers of matrix operations in tandem [1, 2, 7,
24]. The Spare Matrix Vector Multiplication (SpMV) operation embodies the highest
computational cost of the PCG solver, up to 90% of the total cost [25, 29, 48, 49, 63] - the
minimization of this operational cost will provide a significant performance boost to the
presented candidate application as well as many other HPC applications. However, mapping the
SpMV operation to the GPU involves software factors, including software API CUDA, that are
intimately related to underlying hardware architectures provided during the computational
modeling application execution.

3.1 Mapping Sparse Matrix-Vector Multiplication to GPU

The SpMV operation is the highest cost component of the presented candidate
application, as well as many HPC applications that employ systems of sparse matrices and the
potential boost provided by utilizing the GPU as a co-processor has generated a lot of interest
[21, 48, 49, 53, 54, 64]. The SpMV derives its high operational cost not from floating-point
operations, as its instruction mix is poor [48]; rather the inefficient memory accesses are

160

culpable. Properly mapping such a high cost and computationally weak operation to a
computationally powerful device like the GPU for optimal performance involves an
understanding of the software as well as the underlying hardware. The CUDA API is the

software API employed by the presented candidate application and is representative of this
relationship. This is discussed in the context of the actual mapping of the SpMV algorithm to the
CPU/GPU computing system next.

3.1.1 The CUDA Software/Architecture API. The Nvidia CUDA Software API for
general GPU programming is both a software and hardware system that uses higher level C
language extensions to call lower-level OpenGL/DirectX libraries - accessing the GPU device
[25, 37, 62]. CUDA maintains the C language concept of threads [62], but unlike the C
language CUDA exposes the memory hierarchy to the developer [25, 37] which is a necessity as
the GPU has no real virtual memory system and remains as flat as possible for the optimization
of throughput. Despite the added complexity of an exposed memory hierarchy, CUDA freed
developers from the necessity of translating general code to and from data-structures that the
GPU understood i.e. column-major matrix operations, complete with model-view and matrix-
stacks so necessary for lower-level graphics programming [31, 33-35].

CUDA GPU threads, memory, basic API syntax, and associated device hardware
architecture are discussed in the following sub-sections.

3.1.1.1 CUDA API thread hierarchy The GPU thread as defined by the CUDA
architecture is different from the Light Weight Process (LWP) familiar to Operating System
design [9, 37, 62]. The GPU has zero-cost context switching of threads because this is executed
at the hardware level, commonly known as hardware multi-threading, whereas the Operating
System paradigm of threads is one controlled by software either in user or kernel space naturally
incurring overhead. Figure 14 from Nvidia [62] illustrates the hierarchical structure of threads.

161

Block
(2,0)

Block Block Block
iO.ll' (1,1) . (2,X)

Thread
. 10,0>

TN«a<i fimmi; TtiMKidi
(1,0) ! (2,0) ii,m

Thread
<*0)

ThrCKi
(0.1)

7hr«,Jd Threat! Hire^Ki
n. 1) i (2,1) (X 1)
 i

Thread

i j
Thrwad 1 Thfertd i Tlire^ 'ntritdd
(0,2) a, 2) j (2.2) (3,2J (4,21

Figure 14. Diagram of CUDA GPU thread grouping.

The CUDA paradigm provides a direct mapping from logical constructs, such as the
thread, to hardware architecture designs as shown in Figure 15, The large number of transistors
dedicated to floating-point operations is grouped together as sets of Streaming Processors
(SPs), defining the thread construct [61]. These SPs are grouped in sets of 8 to form sets of
Streaming Multiprocessors (SMPs) - the domain of the Block [62], The largest logical
construct, the Grid, is embodied by the groupings of SMPs [62] as shown in Figure 16.

Hardware Logical Construct

Streaming Processor Thread
Streaming Multiprocessor Block
Chip-Device Grid

Figure 15. CUDA hardware to logical construct mapping.

162

r— ■ '- ' 7
I- axtX '^Ji 'staA- uj: X

GPU Device

Symetric Multiprocessor

Figure 16. CUDA hardware with logical Grid overlay.

CUDA executes operations via 24-stage graphics pipelines each fully completing in 4
memory clock cycles using a single SMP defining the logical unit of execution as batches of 32
threads called a warp - 4x8 = 32 [37]. The CUDA paradigm increases parallel granularity,
naturally extending from the single thread to the Block which is composed of sets of threads, to
the Grid which is composed of sets of Blocks [37].

All threads in a Block are assigned to a single SMP, abstracted from the programmer,
although multiple Blocks can be assigned to a single SMP [65]. The abstraction of the
Block/thread/SMP construct is the dominate strategy to produce scalability of CUDA to different
generations of GPU devices - the programmer need not know the exact number of SMPs to
develop GPU-bound code as the hardware will schedule as needed [25, 65].

3.1.1.2 CUDA API memory hierarchy CUDA defines varying layers of memory that
reflect both the underlying hardware architecture and logical threads [62]. Figure 17 from
Nvidia, shows the overview of logical memory constructs to the underlying physical hardware -
clearly the GPU is not equivalent to the CPU in memory complexity but does provide some level
of layering [1,2, 62].

163

Physical Memory Constructs

Oavice ^H^I^H

Multiprociassor N llnHIS

Mu)ttpft»ffi»v 2

t * sa

I
Loslcal Memoi"V' Constructs

Old

Qioch {0.0}

Shatort M&mofy

<^Snftr« RegjstWS R»tji-5l»r4 R»K(«.tOr4 ,

lit, t * t i

i r * fRstructlon
unjt

Proceswr 1 Procfflsor 2 • • * Processor M

11^ ♦*♦

Caith*

Devtce Memory

Thnasd to, 0) Thread (I. 0) Thread (0,0) Thnaad 11. Q)

1 *■'

Wcmofy

t I i;

t $ f
1 tae»l j

Metnewry

i 1"

A

Merrwiy i i
j
t

! ■^

' „."g^i»^-!^:':^s^||igj

Figure 17. CUDA GPU mapping of the physical and logical memory structure.

The lowest level of memory in the defined hierarchy is the register file, composed of the
set of registers for the SMP - each thread has mutually exclusive access to an on-chip register
and local memory in read/write mode [2]. As with CPU hardware designs, the register is the
fastest of the two on-chip structures with local memory costing approximately 20 to 50 clock
cycles [1,2, 62, 66]. The next highest level of memory for the CUDA design is the shared
memory structure. Shared memory is bound to a given Block and each thread has read/write
access implying the need for synchronization to avoid race conditions [1, 2, 9, 62, 66] - the next
set of memory levels are visible to all Blocks defined in the application.

Constant and texture memories are both read-only with regards to the threads in any
given Block but texture can yield some level of locality as the CPU has write access to this
structure [2, 24]. Global memory, sometimes called device memory, has the highest capacity
and clock cycle cost miming as high as 600 to 800 cycles per call [1,2, 62, 66] - global memory
is the only area where the CPU and GPU can communicate using the Peripheral Component
Interconnect Express (PCIe) bus. The PCIe bus is a well-known point of bottleneck in many
CPU/GPU computing HPC applications employing sparse matrix systems [48, 53, 64, 67, 68].

3.1.1.3 CUDA API basic syntax The CUDA API is an extension of the C language
invoking its own GCC -like compiler, e.g. NVCC, to compile high-level GPU Kernels to PTX
machine independent code which is executed at runtime [38, 62] - CUDA recognizes GPU-
bound code via keywords. These keywords are prepended to the C-like fiinction signatures [25,

164

62] defined as the GPU-bound Kernel and prior to calling must have memory set aside for the

execution of each on the GPU device - as a <« Blocks, Threads >» structure. Figure 18

illustrates an example usage of the GPU Kernel declaration and memory space allocation for a
generic function.

Function signature for CUDA Kernel with global keyword

 global void myKernel (void)

Calling Kernel with 400 Blocks composed of 128 Tlireads each

myKernel«< 400,128 >» ()

Figure 18. Example defining CUDA Kernel function signature and execution space.

3.1.2 Algorithmic Strategies for SpMV Mapping. Mapping the SpMV operation to the
GPU via the CUDA Software API presents the immediate challenge of how to distribute the
matrix to the set of warps to be executed. A straightforward approach would apply a single
thread per row, chunking the domain into sets of 32 - this is not the best approach as
documented in [69]. As with [69], the SpMV operation is mapped to the GPU device using the
one warp per row concept to obtain better utilization of the device resources - this is discussed in
detail after the initial performance results.

Details of the code used in this chapter to gather the performance results are presented in
Appendix A and includes both the CSR and BCRS2x2 data compression formats.

3,2 GPU Initial SpMV Performance Results

The results of SpMV on the CPU/GPU for both machine system architectures, System A
and System B, using the CSR data format are presented in this section with the goal of exposing
the performance effects of software, hardware, and algorithmic factors using a consistent model
in differing computing environments. These results are gathered using randomly filled sparse
matrices with 50% sparseness, increasing in total matrix sizes from IK to 4K.

Critical to understanding the observed results is the establishment of metrics to define
performance benchmarking. Computational performance benchmarking for the GPU and CPU
developments and resin flow infusion modeling for the remainder of this dissertation was
accomplished as follows.

165

Normalized FLOPS: The raw count of floating-point operations is modified by clock
frequency of the device being measured to address the variance in processor speeds for
the GPU and CPU architectures. Equation (3.1) illustrates the normalization process

described, denoted as FLOPS^^^^^, with FLOP^^^ the raw count of floating-point

operations, C the clock frequency, and Tthe total execution time.

FLOPS..
FLOP^„,xC

(3.1)

• KFLOPS: The approximate thousands of floating-point operations per second. As the
GPU and CPU architecture vary in their processor speed, the KFLOPS is normalized by
the clock cycle of the device being measured.

• Speedup factor: The ratio of CPU execution time to GPU execution time whereby the
larger the value, the more optimal the performance obtained through the GPU.

System A is the first architecture examined followed by System B.
3.2.1 System A. The CPU/GPU computing system execution of the SpMV operation was

compared against the CPU-only version. The CPU-only environment is much slower than that
of the CPU/GPU environment in every case as shown in Table 5. The CPU/GPU computing
system increases in performance at an almost exponential rate, accelerating at the 2K matrix -
this is consistent with previous findings of GPU performance on larger input models [1, 21, 22,
70].

Table 6
Time comparison for SpMV on System A (CSR compression)
Matrix Rows CPU Time (ms) GPU Time (ms) Speedup Factor
1024 9.479572 0.167552 56.5769
2048 35.138212 0.069408 506.2559
4096 148.453443 0.06912 2147.764

3.2.2 System B. The CPU/GPU computing system execution of the SpMV operation was
compared against the CPU-only version. The CPU-only enviroimient is much slower than that of
the CPU/GPU environment in every case as shown in Table 6. The CPU/GPU computing
system increases in performance at an almost exponential rate, accelerating at the 2K matrix -
this is consistent with previous findings of GPU performance on larger input models [1, 21, 22,
70].

166

Table 7
Time comparison for SpMV on System B (CSR compression)

Matrix Rows CPU Time(ms) GPU Time(ms) Speedup Factor
1024 1.6948 0.059648 28.41336
2048 8.417524 0.055424 151.8751

4096 30.3342 0.047872 633.6522

3.3 Software Data-Structures/Layouts Factors

The previous section of this chapter establishes an obvious benefit in performance when
using the CPU/GPU computing system over CPU-only in both System A and System B
computing environments. However it is necessary to understand how different software data-
structures/layouts can affect performance in CPU/GPU systems in order to optimize for
computationally intensive applications. The first software factor to be analyzed is one that is
commonly touted in the GPGPU community- thread occupancy [37, 49, 71, 72].

The thread occupancy of a CUDA enabled GPU device is defined as a ratio of active
warps to the maximum number oi warps supported by the Compute Architecture [37] - System
A which is Compute Architecture 1.0, and System B which is Compute Architecture 2.0 support
24 and 48 warps per SMP respectively [58-61]. The importance of thread occupancy can mean
the difference of as much as 20-times performance boost [37, 73] . However, arbitrarily
assigning the largest number of warps per block possible is the wrong approach.

There exists a finite set of registers that are allocated for each of the thread blocks, and if
each block requires many registers as defined by threads, the aggregate number of active blocks
possible is reduced and correspondingly the occupancy is reduced and performance suffers [25,
37]. For example, System A defines 8,192 32-bit registers for each SMP and can execute at most

8192
768threads meaning that at most = [10.6666...]« 10registers can be used per thread to

768
achieve 100% occupancy. The negative effects on performance can be further compounded by
register spilling to device memory, increasing memory cycle counts hundreds of times [37, 62].
Both CPU/GPU computing systems architectures were determined to obtain maximum thread
occupancy at 256 threads per block, a multiple of the warp size - providing the optimal access to
local registers and avoiding costly code spills, allowing the hardware to properly coalesce
memory addresses [62, 69].

Another software factor that can affect performance of a CPU/GPU computing system is
the data compression format used - understanding this is vital to optimizing memory-bound
applications such as the presented candidate application [2, 52, 74, 75]. As noted in the

167

introduction, the SpMV lends itself to several performance challenges - key to the data
compression format is locality. The CSR data compression format has poor locality due to
frequent address indirections and BCSR2x2 can mitigate this by lowering the number of memory
loads per floating-point operation - simply by maintaining a 2x2 sub-block set rather than a
single element [2, 52, 74, 75]. However, the benefits of using BCSR2x2 rely heavily on the
existence of dense 2x2 sub-blocks in the original sparse matrix.

The software factors of thread occupancy and data compression format were combined
and executed on a randomly generated 4K sparse matrix defined with a 50% sparseness for both
System A and System B. Table 7 and Table 8 shows the performance of these software factors
for System A and System B respectively - Figure 19 and Figure 20 illustrate graphically the
same results. Both System A and System B display increased performance as the number of
threads per block grows evidence of better utilization of GPU computational resources.
However, dramatic performance increases generated by growing thread occupancy occur at 32
for System A and 64 for System B shown by Figure 19 and Figure 20 respectively - due to
clock cycle execution which is explained in greater depth in section 3.5 of this chapter. The
effect of changing data compression format from CSR to BCSR2x2 is greater for System A (see
Figure 19) than for System B (see Figure 20) as the later defines an on-chip cache relegating
locality mitigation to a lower impact factor for performance. These results clearly illustrate that

software factors can have an impact on the CPU/GPU computing system's performance - the
associated hardware factors are discussed next.

Table 8
SpMV time comparison per thread occupancy and data format (System A)

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2
16 43.0042 15.7161
32 0.1456 0.122944
64 0.068736 0.125344
128 0.080096 0.1272
256 0.06912 0.179392

168

System A: SpMV Performance (4K Matrix)
500

40,0

■j. 30.0

S 20.0
X

.§
H 10.0

0.0

-10.0

^ \
GPU (CSR Compression)

 GPU (;BCSR2X2)

V \
\ \

N \
S \

^-

V 16 32"^-—-"'■'^ 64 128 2

Threads Per Block

Figure 19. System A performance as threads per block increase (CSR and BCSR2x2).

Table 9
SpMV time comparison per thread occupancy and data format (System B)

Threads Per Block GPU Time (ms) - CSR GPU Time (ms) - BCSR2x2
16 18.6252 15.6434
32 32.1774 29.8709
64 0.057152 0.06192
128 0.06928 0.063936

256 0.047872 0.062208

169

System B: SpMV Performance (4K Matrix)
35,0

-5,0

 GPU (CSR Compression)

- GPUfBCSR2x2)

128 2 (5

Threads Per Block

Figure 20. System B performance as threads per block increase (CSR and BCSR2x2).

3.4 Architectural Hardware Factors

The CPU/GPU computing systems execute within differing environmental context for
System A and System B and are important components in the resulting performance of SpMV.
System B has a more advanced CPU and GPU architecture than System A, a 6-core CPU and
Fermi GPU design versus a 2-Core CPU and Quadro GPU design for System B and System A
respectively [56-61, 76]. In and of itself, this difference is irrelevant however when comparing
System A to System B as these architectural hardware variations must be factored into the result.

The architectural hardware design of System B defines a GPU device that provides extra
hardware for context switching compared to the corresponding GPU device of System A. The
increased switching hardware of the GPU device of System B is the manifestation of the double-
pumped graphics pipeline described by the Fermi architecture [61]. Important to the sheer
computational abilities are the number of processing cores of System B with 448 as compared to
System A at 128 [61, 76] - the GPU device on System B has greater than 3-times the power of
System A by this metric.

The architectural hardware design of System B defines a more advance memory structure
than the corresponding structure of System A and this is reflected consistently at every memory
device [58, 60, 61]. System B and System A both have 384-bit wide memory I/O but System B
has the faster GDDR5 memory versus System A with GDDR3 memory. The GDDR5 memory

of the GPU device of System B operates at twice that of GDDR3 - therefore throughput of data

170

will be maximal for System B [58, 59]. The hardware design of the GPU device for System B
has 4-times the number of registers than the corresponding GPU device on System A at 32,768
to 8,192 for System B and System A respectively [58, 59] - these extra registers will provide
more capacity for threads of a given warp as a register is thread-bound in nature [25, 66, 69].
Finally, the shared memory of the GPU device of System B is 3-times greater than that of
System A at 49,152 to 16,384 bytes for System B and System A respectively - providing larger
cache-like structure for System B [61, 76].

These hardware, software, and algorithmic factors when analyzed individually are
important but it is within the context of the aggregate that the real importance is revealed. This
interdependence of factors is discussed next.

3.5 Interdependence of Software and Hardware Factors

The previous sections of this chapter have established the importance of software,
hardware, and algorithmic factors on resulting performance; however these factors are defined as
interdependent. These factors work both independently and with one another to produce the
observed performance results for SpMV in this chapter.

Executing one warp per row rather than one thread per row, the dominant algorithmic
factor with regards to mapping the SpMV operation to the CPU/GPU computing system provides
a fuller utilization of the GPU device [37, 48]. The fuller utilization of the GPU is directly
impacted by the hardware as the entire warp is now performing useful work and memory
addresses are likely coalesced [37, 48]. The algorithmic factor is also impacted by the software
factor of increasing thread occupancy during SpMV as memory is set aside in units likely to
increase the use of more threads per warp.

The software factor described by thread occupancy and data compression formats effect
performance by increasing memory address coalescing and increasing locality - essentially
altering the number of memory loads to the corresponding floating-point operations for SpMV.
However, software factors are tied to the hardware with thread occupancy in the same way that
the one warp per row is affected, and the impact of the data compression format change was less
pronounced for System B than for System A.

The hardware factors of both computing systems effects the performance of SpMV in
two major ways - overall execution speed and impact of data locality. The GPU device of
System B uses a double-pumped logical graphics pipeline that is expressed in hardware as extra
context switch chip; so twice the data input per clock cycle is massaged by the larger number of
processing cores of System B over that of System A. This performance difference is seen from

171

the data plots defined as Figure 19 and Figure 20 where the later executes at approximately half
the time as the former.

As stated previously in section 3.3 of this chapter, the mitigation of locality issues
derived via the employment of BCSR2x2 data compression has a lower effect on performance
for System B than for System A due to the presence of a hardware-level cache on System B that
does not exist on System A [59-61]. An interesting artifact of the hardware, software, and
algorithmic interplay can be seen when increasing the number of threads per block for System A
and System B as shown in Figure 19 and Figure 20 respectively. The general performance in
both cases is similar but shifted to the right for System B, e.g. address coalescing appears
markedly improved at 32 threads per row for System A and 64 for System B - this differential is
likely an artifact of memory device I/O.

CUDA defines the unit of execution to be a warp which is a collection of 32 threads
working simultaneously - coalescing memory addresses within this grouping [37, 62]. The
memory device I/O employed by System B can execute twice for a single clock cycle [59-61]
e.g. 32-bits per every 2-cycles means 16-bits for a single-clock cycle - each floating-point
operation requires at least 32-bits as per the data-type; so the 32-bits metric can be extended as
32-threads. System A employees a memory device I/O with single clock cycle execution,
effectively creating a 16-to-32 comparison, thus System B will coalesce at double that of System
A, i.e. 64 threads versus 32 threads. Related to the concept of memory address coalescing is
shared memory banks.

Shared memory is a software managed cache-like structure, heavily banked to align with
the Single Instruction Multiple Data (SIMD) lane width of the processing core - as with

address coalescing, proximity of these banks to thread accesses is important [25, 37]. These
banks, sometimes called segments, execute optimally with address interleaving such that given
^oatpointer fp in bank B and % being defined as the modulus operator, fp +1 points to the

address at and [B +1)%16 and {B +1)%32 for System A and System B respectively - each bank

holding a 4-byte access per cycle [37, 77]. Critical to performance using shared memory is the
avoidance of bank conflicts which can present any time data access is not sequential. A bank

conflict occurs when more than one memory access is made to the same bank in the same clock
cycle - successive 32-bit words are shared among 16 banks for System A and 32 banks for
System B [54, 61, 62, 69, 74, 77]. CUDA handles a bank conflict by serializing each of the

contending threads, for example: given A'^ memory accesses and A'' unique shared memory banks

bandwidth is increased by a factor of N with no conflicts but is decreased by — for each
K

K thread that requires serialization [37, 62, 77]. Figure 21 illustrates a bank conflict on a generic
CUDA GPU device.

172

HOST Interface

Workload Dispatch

coreO core 1 • • • core

Interconnect
v

memory
control.

memorj'
control • • •

\^ memor>\
control.

DRAM
chips

DRAM
chips

\

Warp Scbeduilng

X
LaaeO iane 1 SBVID Lanes Lancln-!)

BankC Bank{n- 1)

Shared Memory

Writeback

DRAM
chips

GPU

Thread Execution Pipeline

Within a given cycle, Bank 1 is conflict

Figure 21. Block diagram of memory bank conflict for generic CUDA device

Regardless of the individual factors discussed, both CPU/GPU computing systems
analyzed expose performance boosts for SpMV - as shown in Figure 22.

2,500

2,000

1,500

1,000

500

1
■ A: Speedup (CPU/GPU)

DB: Speedup rCPU/GPU) 1
 1 1

1,024 2,048
Matrix Rows

4,096

Figure 22. System A and System B Speedup factors for execution of SpMV operation

This chapter has illustrated that execution of SpMV in the CPU/GPU computing system,
the highest cost of the PCG iterative solver, displays impressive improvement over the CPU-only
version. The factors of software, hardware, and algorithm have demonstrated inter-dependency

173

in regards to the resulting performance of SpMV - how these factors affect the full candidate
solution for composite process flow modeling analysis is discussed in the next chapter.

174

CHAPTER 4
Full Candidate Application - Single CPU/GPU Computing System

This chapter focuses on the full solution to the candidate composite process flow
modeling application within the context of a single CPU/GPU computing system for both
System A and System B. The full solution of the computationally intensive candidate
application is mapped to the CPU/GPU computing system and validated against an analytical
solution for all computing systems involved. The validated application is then executed using
System A and System B and the resulting performance is analyzed to determine how the
hardware and software factors work together to impact the resulting application computational
performance. During the mapping, key computationally intensive kernels are presented and
associated GPU developments explored.

This chapter will ascertain how the hardware architectures of System A and System B
work together with the software factors to denote the application performance - key in this
discussion is the calculation of a computational complexity analysis. The computational
complexity analysis is actualized as a performance modeling equation that can be used to project
how different problem, software, and hardware parameters will affect performance.
Understanding these variations in factors/parameters is essential as new computing architectures
arrive to get optimal performance for HPC applications in many legacy and new computational
modeling codes / code developments.

4.1 Mapping Full Candidate Application to GPU

The mapping of the fiill candidate application to the single CPU/GPU environment is a
natural extension from the previous chapter, detailing the mapping of the SpMV operation, in the
single CPU/GPU environment for both System A and System B. Both of these mappings are
done within the single shared address space CPU/GPU computing architectures and the SpMV is
the largest component of the PCG iterative solver [48-50] and hence representative of the fiiU
solution itself The presented candidate application employees the Concurrent Number
Cruncher (CNC) GPU solvers package by Luc Buatois, et al [50] which uses a custom SpMV
operation with CSR and BCSR2x2 data compression formats as well as Nvidia's CUBLAS
library [78] for SAXPY and DOT-PRODUCT calls [50] (see Figure 23). Nvidia has recently
released a library for sparse matrix operations known as CUSPARSE with restrictions to CUDA
Compute Architecture of at least Version 1.1 [79]. System A falls into the CUDA Compute

Architecture of 1.0, therefore in an effort to apply consistency across CPU/GPU computing
systems the CUSPARSE library was not used in this study.

175

Coacurrent Number Cruncher <::^ CUDA CUBLAS

(4) Get solution ,on^ O

" xO"

=

bl

(3) Solve system

SpaneMatrir) clas^ ohjectx

T_| (2) Convert-initialize

aOO aOl ...
alO all ...

,t-i){N-n

OpenGL
DirectX

CPU

0 ^
GPU

(l)lTiput:[A]{x}={b}

Figure 23. The CNC operational flow from input to output.

The key computationally intensive Kernels presented in the CNC software as well as the
process of mapping the presented candidate application to function in a CPU/GPU computing
system are discussed next.

4.1.1 Key Computationally Intensive Kernels. The most computationally intensive
kernels of the full candidate solution are those that relate to the iterative PCG solver, as it is

called {K X L) times with K the number of iterations for mass-convergence and L the number

iterations for all nodes to be determined as filled (see Algorithm 2.1), as well as the number of
CG iterations for each solution call to the linear equation solver. The SpMV is the largest cost of
the PCG iterative solver and is ported to the local GPU device, as with the SAXPY and DOT-
PRODUCT kernels, and called within the nested loop described in Algorithm 2.1, but the
consideration of GPU code developments, software, and hardware factors is critical for optimal
performance results.

4.1.2 GPU Code Developments. The PCG iterative solver defmed in the candidate
application is mapped and ported to GPU via the CNC code as shown in Figure 24. The CNC
code is third-party software created using the C/C-H- programming language that embeds the
CUDA Kernels within its design - the library header for the CNC package is simply placed as
part of the preprocessor "include" calls and compiled with the proper CUDA library links using
the NVCC compiler and an executable is created with separate GPU-bound code to leverage the
local GPU device [37, 38, 50]. The CNC package solves the system of linear equations of the

matrix form Ax = b receiving input matrix data from the calling C/C++ class file(s), executing

the GPU device code, and retrieving the resulting solution vector for the CPU-bound code
portion of the application [50]. The CNC package defmes the PCG iterative solver, as with all

176

PCG solvers [46], using multiple calls to the SpMV, SAXPY, and DOT-PRODUCT operations -
the SAXPY and DOT-PRODUCT portions of the solver are examined next.

4.1.2.1 CUBA Kernels of PCG solver The SAXPY and DOT-PRODUCT operations are
defined in the Nvidia CUBLAS library [78] which is the CUDA version of the Basic Linear
Algebra Subprograms (BLAS). BLAS is categorized by levels 1, 2, and 3 with level-1 consisting
of vector operations, level-2 consisting of matrix-vector operations, and level-3 consisting of
matrix-matrix operations [78, 80, 81]. CUBLAS follows the BLAS paradigm, defining the
SAXPY and DOT-PRODUCT as level-1 category operations [78].

Input File

O Parse Data

Process/solve

o Create
Data-Stmctiires O Preprocess

-s .

o
-DO UNTIL NO EMPTY NODES

T pDO UNTIL MASS C0N\'ERGENCE

I ■»£
t C
►ENT) DO

►END DO

CNC CUDA Code

(iterative solver)

Figure 24. Presented candidate application diagramming the placement of CNC Package.

There are several steps that must be followed for any CPU/GPU computing system to use
a CUDA library package which can be generalized as initialization, allocation, execution and

finally retrieval of results [37, 62]. Initialization is the first step and is potentially heavy due in
no small part to the sheer size of the library itself The CUBLAS library is quite large,
containing the Shader Assembly (SASS) and PTX code for every Kernel defined in the library
with PTX as much as 75% of the library size [37, 38, 62]. The SASS is the binary version of the
library and PTX the intermediate to allow for differing GPU device generations and is loaded
using a Just In Time (JIT) compiler construct - the driver has to locate and read the SASS
binary for the particular GPU device and load it to the machine's board. Once the library is
loaded, the CPU issues a command for the GPU device to allocate memory for the number of
elements and the data-type that is to be used by the Kernel. The data is then passed to the GPU
from the CPU via pointers as direct contact between CPU and GPU is not possible [24, 37, 62].
The kernel is executed from input data and passed back to the CPU host for use by the system -
the GPU memory is not explicitly removed until another call to the allocation is made, the GPU
is a state-machine by design [8, 31, 34, 35].

177

The CUBLAS scalar DOT-PRODUCT function executes a single memory access for
every arithmetic operation yielding an upper bound on performance that becomes the ratio of
CPU to GPU memory sizes, typically ranging around 5 to 10 [37, 78, 82]. The cost of access to
the data residing in CPU space erodes any performance boost. This is why the full
implementation of the candidate application keeps data located in GPU space [50] - instead of
multiple global accesses during the iterative phases of the solver, single calls are made at the
beginning and end of the solver [50]. The computational cost of the scalar DOT-PRODUCT is
negligible relative to the SpMV but its role in the PCG algorithm is invaluable as these
computations are used to define the solution convergence of the linear equation system [46, 65].

The scalar DOT-PRODUCT is primary in the computation of residuals [46], applied in
Algorithm 2.2 at lines 11 and 12. The closer the residuals are to zero, the more likely a solution
has been located - however this assumption could become tenuous if the device employed is not
fully compliant with IEEE-754 floating-point representation standards [83]. The potential for
non-compliant floating-point operations using GPU devices is a valid concern [84] as GPU
manufactures have never openly held to this compliance and this was never a concern [83, 85,
86]. The typical high-res games redraw frames at up to 60-times a second [2, 24] so any visual
artifacts produced by a slightly-off floating-point value would not be noticed even by the most
perceptive human player. Once the GPU moved into the exacting analytics required of the
engineering/scientific community, the formerly lax adherence to numerical accuracy standards
needed to be tightened. The algebraic representation of the scalar DOT-PRODUCT operation is

shown in equation (4.1) with ^and B vectors each of lengths .
n

A*B^Y,A,B,=AiBi+A^B,+--- + A^B„=AB^ (4.1)

Nvidia has long maintained that its GPU devices held fast to the IEEE standards but
admitted that the more accurate double-precision representation was not supported [86], at least
until the advent of the Tesla Fermi architectural designs [60, 61]. These architectures are not
only double-precision compliant they contain Error Correcting Code (ECC) adaptations to avoid
propagation of small numerical inaccuracies [59].

Perhaps counter-intuitively, the real instantiation of floating-point inaccuracies involving
the scalar DOT-PRODUCT is the addition portions of the operation rather than the
multiplication [13, 45, 87]. The reason is the potential for alignment error when normalizing the
result to be 127-biased [13, 87]. Figure 25 shows an example conversion from a base-10
floating-point number to the corresponding base-2 representation with applied 127-bias.

178

(10.25),,

D:
+ lic> (0.25 (10)

(1010), +

3 original base-10 representation

0.25*2 = 0.5 = 0 + 0.5 => b, = 0-
25) (=>

0.50*2 = 1.0=1+0.0 => b,= l

(T
(0.01),

=aL_
(1010.01)

1}
base-2 representation

(1.01001) *2 '<^normitlized as per IEEE-7S4 standard

Figure 25. IEEE conversion from base-10 to base-2 with normalization.
Unfortunately, even full compliance of IEEE standards for floating-point representations

is no guarantee of full accuracy in every case [45, 87].

Paraphrasing work by Anthony M. Castaldo [87], given two numerals with exponents

£1,^2 such that e, > 62 the number of bits to exceed the scale of the returned value is e, -e^ this

is the number of zeros that the smaller numeral will be padded to on the left to properly align.
Therefore, if the value of smaller operant is just one greater than the bits of the mantissa it adds
nothing to the resulting addition. Supposing the 32-bit format, if the aforementioned exponents
differ by 24 or more, the answer will be the larger of the two ~ the other operant is completely
ignored in the result. The operation still ascribes to the IEEE-754 standard but is completely
erroneous with regards to small numerical variations in the long term; particularly sensitive to
these perturbations are large clustered machines where the error can magnify as it progresses
through the system, known as a soft error [84] - hence contributing to the importance of ECC
adaptations.

The CUBLAS SAXPY operation executes a scalar multiplication and addition with
vectors as shown in equation (4.2) with y and x vectors and a the scalar. The CUBLAS version

of this level-1 BLAS operation is generalized to allow for incremental steps in both x and y

directions, i.e. an array stride [78, 88]. These extra levels of indexing could cause a slight drop
in performance but is a trade-off to the generality provided by the library. The SpMV operation
is the same used in the previous chapter - complete with the same determination of optimal
thread occupancy.

y<r-ax + y (4.2)

The fiill candidate application is validated against an analytically derived solution for a
simple 2D unstructured mesh model consisting of radial center injection in a thin circular plate
mold geometry using the single CPU/GPU computing system next.

179

4.2 Validation of Full Candidate Application on Single CPU/GPU

The correctness of the full candidate application for the single CPU/GPU computing
systems is ensured via the examination of tlow-front progression and injection port pressures of
numerical solutions for CPU and GPU against the correspondingly analytical results. The model
used for validation is simple 2D circular plate mold geometry with a center, radial injection and
is compared with the resulting analytical equation.

The simple circular plate model has a radius of 10 cm and an inner radius of 0.15 cm for

the radial injection port as shown in Figure 26. The inner radius, i?g, is subjected to a constant

radial flow rate2- The thickness of the cavity is//, the injection inlet pressure is P, and is a

function of transient resin infusion time, resin viscosity is /i, the permeability of the fiber

preform is K, and the porosity of fiber compaction is ^. The flow front radial location at any

time / is given by [89]:

R(t)- Qt
7T(I)H

Rl (4.3)

The corresponding expression for injection pressure, which varies with time, is given by [89]:

Po =

fw~ '

(4.4)

Figure 26. 2D circular plate vahdation model (not to scale).

The following physical parameters are used in this analysis:

180

cm
Q = 2.4 , penneabilityi: = 44.0e-08cm , a viscosity// = Q.QlPaS, a porosity of^ = 0.805,

sec

a time step A/ = 0.5 , and an element thickness// = 0.742cm . The circular plate model involved
a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements. Figure 27 and
Figure 29 display the flow-front progression showing the computed and analytical variation of
the radial flow front location with respect to time for System A and System B respectively and
clearly define accuracy with the analytical solution. Figure 28 and Figure 30 display the
corresponding transient inlet injection pressure for System A and System B respectively and
clearly define accuracy of the computational solution.

The flow-fi-ont and inlet injection pressure values are accurate for this circular plate radial
injection geometry. Other complex flow modeling geometries also showed equivalent
comparison of the flow front progression and the predicted fill time between CPU/GPU based
computational solutions for the same geometry and problem parameters employed.
Computational performance modeling performance of the fiill candidate solution for the single
CPU/GPU computing systems is presented next. The initial performance evaluations were
conducted using the single CPU/GPU computing systems.

~\
10,00

..«****
8.00

:...**^^**^ a

.*-**^ ^ 6.00 *«^

Fl
ow

 F
ro

nt

/

^

2.00 Analytical

/
)K CPU (Serial)

/
O GPU (Serial)

0 2 S 1 2 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78

Time Step
^-. J

Figure 27. Validation of single CPU/GPU for flow-fi-ont progression (System A).

181

120

100

SO
o

S 60

40

 AiiJiiydcal

X CPU (Serial)

O GPU (Serial)

0 2 8 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 78

Time Step

Figure 28. Validation of single CPU/GPU for inlet injection pressure (System A).

10,00

8,00

S 6

3

o

00

00

;.oo

0,00

 Analytic ;il

X CPU (Serial)

O GPU(;Seiial)

0 2 S 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74

Time Step

Figure 29. Validation of single CPU/GPU for flow-front progression (System B).

182

120

100

SO
o

S 60

Si
~^ 40

^

»**«-»*^ Si

1 Analytical

X CPU(Serinl)

O GPU (Serial)

0 2 8 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74 "8

Time Step

Figure 30. Validation of single CPU/GPU for inlet injection pressure (System B).

4.3 Initial Full Candidate Application Performance on Single CPU/GPU

The results of full candidate application on the single CPU/GPU for both computing
system machines, System A and System B, with unstructured meshes MA, MB and lOFT as
input model data and the GSR data compression format are presented in this section with the goal
of exposing the performance effects of software, hardware, and algorithmic factors using a
consistent model in differing computing environments. Clearly, the most salient metric of
performance measures for scientific and engineering applications where analysis time is
concerned is the direct measure of computational solution time. However, due to the inherent
processor differences in terms of clock speeds, benchmarking different hardware is difficult to
quantify. Total computational time employed also depends on the cost of arithmetic operations
in different architectures that can vary, and detailed information in commodity processors used in
this work are proprietary [66, 72, 88]. A comparison of the Floating-Point Operations rate
(FLOPs) may also be misleading in diversified architectures with different clock frequencies -
therefore FLOPs are normalized by the clock rate as defined in section 3.2 of chapter 3.
Normalizing FLOPs helps to avoid idiosyncrasies of individual hardware, to provide arithmetic
power comparisons. Execution time depends on processor speeds and normalized FLOPs allow
for a more definitive comparison over wall-clock time or FLOPs.

The single CPU/GPU computing system defined as System A is examined first followed
by System B.

183

4.3.1 System A. The single CPU/GPU computing system execution of the fiill candidate
apphcation was compared against the CPU-only version. Table 9 shows that the GPU
outperforms the CPU-only system for process flow modeling analysis employing input mesh
MA, MB, and lOFT when examined with regards to total solution wall-clock time. Both flow
modeling analysis obtained same flow progression contours and predicted infusion time for the
same physical problem parameters employed in all cases. The superior arithmetic power of the
GPU for this single CPU/GPU computing system is clearly visible in Table 10, presenting an
advantage of more than 9-times the number of KFLOPs, which have been normalized as per
section 3.2 of chapter 3, in the GPU compared to the CPU.

Table 10
Full solution performance with single CPU/GPU and CSR compression (System A)
Unstructured Mesh CPU Time (sees.) GPU Time (sees.) Speedup Factor
MA 6,176.46 418.44 14.76
MB 81,929.7 4,219.61 19.42
lOFT 6770.31 285.17 23.74

Table 11
Full solution KFLOPs with single CPU/GPU and CSR compression (System A)
Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU)
MA 142.26 1,169.56
MB 133.39 1,292.44
lOFT 135.92 1,186.73

4.3.2 System B. The single CPU/GPU computing system execution of the full candidate
application was compared against the CPU-only version. Table 11 shows that the GPU
outperforms the CPU-only system for mput mesh MA, MB, and lOFT when examined with
regards to total solution wall-clock time. The superior arithmetic power of the GPU for this
single CPU/GPU computing system is clearly visible in Table 12, presenting an advantage of
almost 3-times the number of KFLOPs, normahzed as per section 3.2 of chapter 3, for the GPU
compared to the CPU.

Table 12

Full solution performance with single CPU/GPU and CSR compression (System B)
Unstructured Mesh CPU Time (sees.) GPU Time (sees.) Speedup Factor
MA 424.93 168.57 2.52
MB 6,414.74 1,197.35 5.36
lOFT 627.83 105.09 5.97

Table 13
Full solution KFLOPs with single CPU/GPU and CSR compression (System B)

Unstructured Mesh KFLOPs (CPU) KFLOPs (GPU)
MA 2,299.38 3,213.32

MB 1,891.28 5,046.01
lOFT 2,142.75 4,743.81

4.3.3 Initial performance analysis. The execution of the unstructured mesh input files,
MA, MB, and lOFT for both computing systems exposes some common performance behaviors
- most notably the correlation to problem size and performance. System A and System B
produce better performance using total solution time and normalized FLOPs as metrics when the
problem size increased. This performance boost for increasing problem size is reflected in the
previous chapter's analysis of the SpMV for both CPU/GPU computing systems as well as
though out the published literature regarding GPU performance [2, 25, 67, 90]. However, there
are some differences with the magnitude of the performance boost found. System B has a lower
speedup factor and KFLOPs change than does System A. Likely this is due not to any defect of
System B but rather the more advanced CPU used - the dual-core CPU of System A is so
lacking in relation to the GPU that the speedup factor must be greater.

4.4 Software Data-Structures/Layouts Factors
This previous section was an initial performance analysis for three unstructured mesh

model inputs via the single CPU/GPU computing systems defined as System A and System B
and produced some good performance boosts, especially for System A. However, the initial
software variables need to be examined to identify potential factors that can hinder performance
of the presented candidate application. The first software factor to be examined is data
compression format.

The initial performance was executed using CSR, a data compression format with a noted
proclivity for poor computational intensive performance [53, 54] - this has been shown to
improve with BCSR2x2 due to increased locality [52-54]. The presented candidate application
generates systems of equations based on 3-noded triangular elements each with 1-degree of
freedom resulting in dense sets of sub-blocks in the sparse matrix [44, 45] - a potential boon for
locality using BCSR2x2.

The presented candidate application generates dense sub-blocks of non-zero elements via

the methodology of the Finite Element Method (FEM) - initial collections of 3x3 local
element matrices result from 1-degree of freedom applied to the input 3-noded triangular
elements [44, 45]. These local element matrices are coalesced into a global element matrix that

maintains symmetry Ixom these 3x3 sub-matrices [44, 45] - the 2x2 sub-blocks utilized by the

185

BCSR2x2 data compression will be subsumed by the dense sub-matrices of the global element
matrix. The application of data compression formats to improve locality is closely associated to
memory address coalescing and thread occupancy as all of these seek to maximize throughput by
grouping as many threads as possible, however the CNC GPU solver requires multiple Kernels
which forces a schism to these groupings.

CUDA places implicit barriers between dependent Kernel invocations [37], e.g. Kernels
that rely on one or more currently executing Kernels must wait for system synchronization to
occur before continuing [62, 65]. This new software factor subsists with the PCG iterative solver
because it is composed of not just the SpMV Kernel but a number of CUBLAS calls executed in
sequence. System B, as part of the CUDA Compute Architecture 2.0, can simultaneously apply
Kernels using the CUDA stream [60, 61] but this is not a luxury offered by System A [62, 76].
Therefore, to maintain as much consistency of variables between systems, these stream
constructs were not employed in the present work. The role of the data compression format is
discussed next.

Figure 31 and Figure 32 show the execution time for System A and System B
respectively revealing a distinct difference in the performance benefit of changing from CSR to
BCSR2x2 for each of these CPU/GPU computing systems. Figure 31 shows the performance
boost of increased locality for the presented candidate application expressed as the BCSR2x2
data format for input meshes MA and MB with negligible effect for the less regular lOFT mesh
configuration whereas Figure 32 describes a deleterious result for meshes MA and MB - again
lOFT is negligibly affected. This difference in performance is surprising from a pure locality
approach as the dense sub-blocks created by the 3-noded triangular elements are the same for
both System A and System B - the arithmetic power leveraged by the different CPU/GPU
computing systems via the normalized FLOPs is shown in Figure 33 and Figure 34 for System A
and System B respectively.

System A shows a much higher rate of floating-point operations when going from CSR
to BCSR2x2 than System B for the corresponding change (see Figure 33 and Figure 34) -
excepting the lOFT model mesh configuration which illustrates negligible difference in both
computing environments. System B manifests a negligible increase in normalized FLOPs for the
BCSR2x2 format and a decrease in performance - given the relative regularity of the input mesh
configuration; this implies an initially poorer locality for System A. The lower impact of the
locality change for System B is likely due to the implementation of an actual cache as per the
Nvidia Fermi architecture [60, 61]. The negligible change for the lOFT input mesh supports a
correlation not just to the size of the problem domain but the expressed regularity of the matrix.
The hardware factors on performance for both System A and System B are discussed next.

186

20Q0

1800

1600

1400

1200

1000

SOO

600

400

200

■ CSRTiiue (ms)

aBCSR2x2Tmie(ms)

MA MB
Unstructured Mesh

lOFT

Figure 31. Full candidate solution performance (System A).

1800

1600

1400

' 1200

1000

' 800

600

400

200

■ CSRTimeims)

^BCSR2x2Tmie(ms)

MA MB
Unstructured Mesh

lOFT

Figure 32. Full candidate solution performance (System B).

187

»5

O

8.0

70

6,0

5,0

4,0

3,0

2.0

1,0

0,0

ICSR SBCSR2x2

MA MB

l^nstructured Mevh

lOFT

Figure 33. Full candidate solution KFLOPs performance (System A).

6,0

5,0

4,0

35

2 30

2.0

1.0

0.0

ICSR aBCSR2x2

MA MB

l^nstructurecl Mesh

lOFT

Figure 34. Full candidate solution KFLOPs performance (System B).

4,5 Hardware Architectural Factors

The observed performance of the CPU/GPU computing systems using the unstructured
mesh configuration defined by MA, MB, and lOFT is affected not just by the software factors

discussed in the previous section but hardware factors as well. The presented candidate

application resulted in a performance boost for both System A and System B when using the
CSR format albeit to a smaller degree for System B - excepting the negligible results observed
for the less regular input mesh lOFT in both computing environments. However, when the
BCSR2x2 format was employed the performance of System B dropped while System A
increased - fairly regular geometries, consistent models and software factors were used leaving
the underlying hardware architectural factors as culpable.

System B has a cache defined at the hardware level [60, 61] whereas System A does not

[58, 76] - this has great impact on solutions involving sparse matrices such as those applied via
the presented candidate application [54]. A hardware-level cache provides the ability to stash a
process during execution and quickly retrieve it when needed rather than calling global memory
read/writes at every instant. The more advanced architecture of System B does not negate the
importance of judicious application of software factors, but it does alleviate it somewhat. The
lowered importance of locality on System B, expressed using BCSR2x2, adds all the
computational overhead of extra loops to iterate over defined sub-blocks but none of the
corresponding utilization of greater arithmetic units and hence none of the predicted performance
seen in System A.

The software and hardware factors encountered during the execution of computationally
intensive applications using CPU/GPU computing systems are typically difficult to quantify and
as such defining concrete metrics for performance on these system is difficult. The formulation
of an expected performance equation is discussed in the next section.

4.6 Computational Complexity Analysis

Computational complexity has historically been quantified using asymptotic analysis to
understand how the design scales [91], but this methodology relies on axioms that do not exist
for GPU computing such as constant operations yielding negligible costs to overall performance
[92]. Adjusting the number of threads per block can allow CUDA to coalesce memory addresses
resulting in as much as 20-times reduction in execution time [72] - small changes can have big
impacts on the algorithm [66]. Therefore quantifying algorithmic behavior is relegated to the
minutia of performance modeling as standard parallel modeling techniques fail to take into
account the importance of limited and high access costs to the exposed memory hierarchy of the
modem GPU [16, 72].

Currently there is no standard for performance analysis for use with GPGPU computing,
however options have been published [16, 66, 67, 72, 93] and this study follows many of the
concepts put forth in these works. The code that is ported to the GPU(s) for this research is
broken up into its major components, analyzed, and relevant parts re-assembled to form a

189

general performance model. The single CPU/GPU computing system is studied first and expands
to the multiple CPU/GPU computing system in the next chapter.

The following sub-section will derive a mathematical model for a single call to the PCG
iterative solver rather than the whole solution and is detailed in Appendix A. This approach
yields a base equation from which the different behaviors for different parameters can be
determined. The third party CNC software was used for the results being analyzed which defines

16x16 thread blocks [50] - this is the assumed constant for all derived equations.

4.6.1 Single call to PCG solver. Computing the average number of non-zero elements

for a given sparse matrix that is assumed to be square with 16x16 thread blocks, i?^^ withG,„^^,

M are the number of bytes in global memory and the total number of rows respectively - using
bytes as the metric defines the numerical values of 4 given that there are 4 bytes for every
floating-point data type expressed in equation (4.5).

«„.M«jl.G.,.-li<ipil| (4.5,
[(4 + 4)xMj

Commuting \hQ number of blocks, Ng,m\h N,, N^^., and N^^^^ the number of threads per warp,

the number of warps per block, and the total number of symmetric multiprocessors for M rows

and average non-zero entries per row as i?^^ columns can be defined by equation (4.6).

^s ^ ,, ,, "t 4.6)

Computing the cycle cost based on the defined cost of sparse matrix-vector computational costs

for the serial CPU at 2X(A^^.^^^^ X A^) [46, 91] and using a global memory cycle count of 500

based on the average for the actual data range of 400 - 600 is Cj,, with B the number of threads

per block expressed in equation (4.7).

'500 + M'
_, j. — z.y^ (4.7)

/5

Computing the total cost for execution of preconditioned conjugate-gradient solver on GPU,

^peg withA^,i? and £)the total number of iterations for convergence, memory clock frequency,

and number of cycles per pipeline can be defined by equation (4.8).

1 f
C =Kx

peg
NB^^S,.P^C,X-^-^\ (4.8)

Equation (4.8) is not exact but does reflect many of the same performance modeling equations in
published works [66, 72].

Figure 35 and Figure 36 depict a comparison of actual to estimated performance time for
System A and System B respectively using unstructured mesh configuration MA, MB, and

190

lOFT expressed with the CSR data compression format. The results are not exact, as the thread
dispatch policy for both GPU devices is non-public information [72, 93] and is interleaved for
optimal throughput [2, 37, 55]. In addition, synchronization costs between dependent Kernels of
the PCG iterative solver are not published. The issue is fiirther compounded with an assumed not
large but with an unknown dispatch policy. The approximate nature of the results provided by
the derived performance model demands the examination of normalized error which is computed

\A,-E\
by^ — with A^ and E^ defining the actual and estimated times respectively.

A

Figure 37 and Figure 38 show the normalized error of the single PCG call for System A
and System B respectively and indicate values of less than 50% which is a manageable amount
of error for the given input data - the data results are shown in Table 14 for System A and Table
15 for System B. The next section extends from the single call to the PCG iterative solver and
mathematically models the full candidate solution.
Table 14
GPU device limits for both systems

System A: Compute Architecture 1.0 System B: Compute Architecture 2.0

Core Clock Rate =1.35 GHz Core Clock Rate =1.15 GHz

Total Warps = 24 Total Warps = 48

Total SMP= 16 Total SMP = 14

Shared Memory per Block = 1024 Shared Memory per Block = 1024

Registers per Block = 512 Registers per Block = 256

Shared Memory Banks = 16 Shared Memory Banks = 32

191

a

4.00

3.50

3.00

2,50

2.00

1 50

1.00

0.50

0.00

I Actual Tune

I Estimated Tune

MA MB

ITiistiuctured Mesh

lOFT

Figure 35. Performance modeling of single call to PCG solver (System A).

i.so

1 60

1,40

1 20

S 0 80

0.60

0.40

0.20

0 00

IActu;ilTime

lEsftiiiatedTuiie

MA MB

Unstructured Mesh

lOFT

Figure 36. Performance modeling of single call to PCG solver (System B).

192

0.50

0,45

0.40

0.35

I 0.30

1 0.25

o
Z

015

0.10

0.05

0,00
.MA MB

Unstructured Mesh

lOFT

Figure 37. Normalized error for single call PCG modeled performance (System A).

Figure 38. Normalized error for single call PCG modeled performance (System B).
Table 15
Performance modeling of single calls PCG (System A)
Unstructured Mesh Actual Time (ms) Estimated Time (ms)
MA 0.888224 0.920487534

MB 2.45664 3.545509018
lOFT 0.938336 1.008680919

193

Table 16
Performance modeling of single calls PCG (System B)

Unstructured Mesh Actual Time (ms) Estimated Time (ms)

MA 0.470848 0.442022833

MB 1.160256 1.702796988

lOFT 0.374528 0.484375628

4.6.2 Full Solution Cost - Single GPU. The final modeling performance equation for a
single CPU/GPU computing system is derived from the estimated single call to the PCG
computed from equation (4.8). The size and granularity of the local GPU device registers are
significant to the number of active threads for utilization of computational resources and is

defined by equation (4.9) with Rg^n^^ the register allocation unit size and W^^^^^,^^ the warp

allocation granularity - both of which are found in hardware specifications [37, 62].

^S alloc

^- ~ w.
(4.9)

granular

Equation (4.9) is a major component of a defined conditional function that models the

serialization of threads within the warp construct shown as equation (4.9.1) with N^^^ the

number of active thread blocks per SMP and A'',,^ = M ^
N.

W = pen

IF

ELSE

N N

I

x^„

(4.9.1)

Equation (4.9.1) is passed to the Gaussian distribution adapted to model the performance
behavior of the single CPU/GPU computing system defined as equation (4.9.2).

1 4 R growth v^^ rxe (4.9.2)

Computing the total cost for execution of solution [93] with multiple calls to the GPU-enhanced

PCG, T^^^ with it the total number of iterations for full solution convergence - equafion (4.9.3)

defines the final performance modeling equation for a single CPU/GPU computing system.

T^gpu -V^^ Cpcg }^ ^gromh (4.9.3)

194

Figure 39 and Figure 40 depict the results of the actual to estimated execution times for
the solutions of unstructured mesh configurations MA, MB, and lOFT for single CPU/GPU
computing systems executing in System A and System B environments respectively. The
formed finite element matrices for the input data meshes being solved via the presented
candidate application are expressed using the CSR data compression formats in all cases.

The observed results of performance modeling for both CPU/GPU computing systems
show a close equivalence of actual to estimated solution times. Both System A and System B
showed dramatic decreased difference of estimated and actual time as the size of the input data
increased - an inverse relationship that corroborate the premise that the underutilized and non-
coalesced memory accesses can be expensive [62, 66, 72, 93]. The more intense the floating-
point operations, the more fully utilized the CPU/GPU computing system resources are and the
better chance of address coalescing. The increased number of input data elements being solved
mitigates the impact of extraneous variables such as threaded time-sharing policies and equation
(4.9.3) becomes the dominating predictor for the single CPU/GPU computing system for the full
solution of the candidate application. Figure 41 and Figure 42 shows dramatic decrease in
normalized error between the actual and complexity analysis predicted results for both System A
and System B respectively support this precept - Table 16 and Table 77 are the actual results.

System A: Performance Modeling
2000

1800

1600

1400

"Jnoo
I 1000

P 800

600

400

200

I Full Soluhoin^achinl)

i Full Solution (estimated)

1 J
MA MB

Unstructured Me.sh
lOFT

Figure 39. Performance modeling single CPU/GPU full solution (System A).

195

System B: Performance Modeling
1200

1000

SOO

600

400

200

IFiill Solution (actual)

i Full Sohitiou (estiniatedj

MA MB

Unstructured Mesh
lOFT

Figure 40. Performance modeling single CPU/GPU full solution (System B).

System A: Normalized Error
0.25

0.20

0,15

0.10

0,05

0.00
MA MB

Unstructure<l Mesh
lOFT

Figure 41. Error single CPU/GPU full solution modeled performance (System A).

196

0 60

0.50

0.40

0.30

0 20

0.10

0.00

Svstem B: Normalized Error

MA MB

Unstructured Mesh
lOFT

Figure 42. Error single CPU/GPU full solution modeled performance (System B).

Table 17
Performance modeling single CPU/GPU full solution (System A)

Unstructured Mesh Actual Time (sees) Estimated Time (sees)

MA 204.69 157.30

MB 1,804.05 1,760.76

lOFT 140.55 135.78

Table 18
Performance modeling single CPU/GPU full solution (System B)

Unstructured Mesh Actual Time (sees) Estimated Time (sees)

MA 146.64 75.25

MB 974.90 843.17

lOFT 89.23 75.29

4.6.3 Contribution of Hardware Factors. This section establishes a relationship to
hardware factors and the resulting application performance via the derived equation (4.9.3),
adjusting hardware variables and then projecting against the actual performance of the

197

application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)
on performance of the CPU/GPU computing system is theorized.

4.6.3.1 Single PCG Call. The first performance modeling that is adjusted for hardware
factor(s) changes is the single call to the PCG solver, since this is used to build the final full-
solution model (see equations (4.8) and (4.9.3)). The number of SMP chips was adjusted to be
greater than and less than the current number defined in both single CPU/GPU computing
systems for a single call to the PCG iterative solver to determine the theoretical effect the SMP
counts have on the resulting performance.

The behavior expressed by both System A and System B computing systems was similar,
excepting of course the faster nature of System B [58-61, 76]. Figure 43 shows that reducing the
number of SMPs to 4 for System A resulted in an increase in execution time, exacerbated by the
larger input of unstructured mesh MB. This same reduction in SMPs on System B shown by
Figure 44 resulted in a similar increased execution time and, as with System A; the larger model
configuration MB had a greater impact. The observed performance change for both System A
and System B as a result of this adjusted hardware factor is as expected given the larger model
mesh MB presents more elements for a relatively low number of SMPs - SMPs are the physical
equivalent of the logical block [37, 62] so lower counts manifest less computational power that
will be fiarther debilitated applied in larger problem space provided by input mesh MB. The
converse is observed by increasing the number of SMPs to 64 for both System A and System B,
as before this is no source of consternation - more computational power will naturally be
leveraged by a larger enviroimient in which to be expressed.

The hardware factor of SMPs at the level of a single call to the PCG iterative solver
extends naturally to the performance of the full candidate solution. The Ml candidate solution
subsumes the single PCG call and works in tandem - result expressed as a magnification, a
constant, or abrogation to resulting performance. The full candidate solution hardware factors
for the single CPU/GPU computing system are discussed in the next sub-section.

198

System A: Influence of SMP
1

n Estimate (4)

■ Estimate (16)
14.00

12.00 B Estimate (64)

^, 10.00
o

^ 8.00

^ 6.00

4,00

^^1
_

2,00

0,00
^

MA MB

Unstructured Mesh
lOFT

Figure 43. Performance model for single PCG solver on System A (SMP adjusted).

System B: Influence of SMP
7.00

6.00

5,00

4,00

-S 3,00
H

2,00

1 00

0.00

1
a Estimated (4)

■ Estimated (14)

^ Estimated (;6 4)

■

1 ^ ■_ ^

MA MB

Unstructured Mesh
lOFT

Figure 44. Performance model for single PCG solver on System B (SMP adjusted).

4.6.3.2 Full solution - single CPU/GPU. Adjusting the hardware factor(s) for the full
candidate solution and the resulting impact(s) on the performance is modeled in this sub-section.
As with the previous sub-section the number of SMPs is adjusted and the resulting theoretical
performance is examined to deduct the relative impact of this factor on behavior for both single

199

CPU/GPU computing environments for System A and System B. Equation (4.9.2) defines the
most direct access of the number of SMPs to the full candidate solution as a rate of
growth/decay.

The fiiU solution performance model given by (4.9.3) applies the Gaussian distribution to
the overall performance of the system with the determination of serialized threads within a warp
defined as the allocated register unit size for the given GPU device - the ratio of SMPs directly
impact the value of this allocated unit size as fewer SMPs coerces lower unit sizes and less
computational ability and vice versa. SMPs are given this position in the performance
complexity model as each will provide a factor to the initial single PCG solver call, modeled by
equation (4.8). Examining the performance results in Figure 45 and Figure 46 reveal a
comparable behavior to that observed for the single PCG call discussed previously but to a much
less magnitude.

The single CPU/GPU computing system environments defined by System A and System
B express a performance boost for an increased number of SMPs and a higher execution time for
decreased numbers of SMPs. However, the full candidate solution is less affected by this
hardware factor change as was with the single PCG call with input mesh configuration MA
yielding negligible results for System A and System B; the input mesh lOFT mesh configuration
now reflects the performance comparable to mesh configuration MB.

System A: Influence of SMP
2500

2000

■^ 1500

1000

500

DFiill Solution (SMP =4)

■ Full SolutionfSMP = 16)

m Full Solution (SMP = 64)

MA MB

Un.structured Mesh
lOFT

Figure 45. Performance model for full candidate solution on System A (SMP adjusted).

200

Svstem B: Influence of SMP
.•i.^uu 1

3000
D Fiill SolutioinSMP =-1)

■ FiillSolutioiHSMP=14)

2500 m Fiill Solution (SMP = 64)

g 2000
VI

Hi

3 1500 ■

1000

500 ■
 ^^^

MA MB

Unstructured Mesh
lOFT

Figure 46. Performance model for full candidate solution on System B (SMP adjusted).

4.6.4 Contribution of Software Factors. This section establishes a relationship to
software Jactors and the resulting application performance via the derived equation (4.9.3),
adjusting hardware variables and then projecting against the actual performance of the
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)
on performance of the CPU/GPU computing system is theorized.

4.6.4.1 Single PCG Call. The number of threads per block is an obvious software factor
to adjust as this is can be related to memory address coalescing and can be viewed as another,
less direct application of thread occupancy. The theoretical performance results of both System
A and System B corroborates documented performance regarding number of threads per block
[48, 49, 65, 66]. Lowering the number of threads per block to 128 from the optimal 256
increases theoretical execution time for the single PCG solver and increasing to 768 boosts
performance, modeling the effect of hardware coalescing of memory addresses [62, 77]. This
software factor is manifest for both System A and System B computing environments as shown
in Figure 47 and Figure 48 for System A and System B respectively.

The influence of the given software factors is clearly evident at the single PCG solver call
level, the next sub-section discusses the full candidate solution.

4.6.4.2 Full solution - single CPU/GPU. Adjusting software factor(s) for the full
candidate solution and the resulting impact(s) on performance is modeled in this sub-section -
the number of threads per block is altered. The effect of this software factor is similar to the

201

1 1

observed results for the single PCG solver call - smaller numbers of threads express lower
performance whereas greater numbers yield a performance boost.

The observed hardware and software factors work together with the defined
computational algorithm to effect performance - this interplay of factors is discussed in the next
section.

System A: Influence of TPB
6.00

5,00

4 00

s
H

2.00

1.00

0.00

1
D Estimate (128)

■ Estimate (256)

1 Estimate (512)

ki ^H^^
MA MB

Unstruchired Mesh
lOFT

Figure 47. Performance model for single PCG solver on System A (Threads adjusted).

System B: Influence of TPB
3.00

2.50

;.oo

i 1.50
S
H

1.00

0,50

0.00

n Estimated (128)

■ Estimated (256)

a Estimated (512)

M
MA MB

Unstructured Mesh
lOFT

Figure 48. Performance model for single PCG solver on System B (Threads adjusted).

202

System A: Influence of SMP
2500

:ooo

2 1500

1000

500

DF^ill Solution (SMP =4)

■ FuU Solution (SMP =16)

ePull Solution fSMP= 64)

MA MB
Unstructured Mesh

lOFT

Figure 49. Performance model for full candidate solution on System A (SMP adjusted).

System B: Influence of SMP
3500

3000
D Full Solution (SMP =4)

■ Full Solution (SMP = 14)

2500 HFuU Solution (SMP =64)

S 2000

41
S 1500

1000

500 L ^^^
MA MB

1 Jns-tru cturecl Mesh
lOFT

Figure 50. Performance model for full candidate solution on System B (SMP adjusted).

4.7 Performance and Relation to Software and Hardware Factors

The resulting performance of the single CPU/GPU computing system is directly tied to

the interplay of software and hardware factors of the environments in which they executed and

are related in this sub-section. Hardware factors such as the addition of SMPs and increasing

203

memory provide the context in which software factors can express further optimization and
software factors such as increasing thread occupancy and data compression formats that can
increase locaHty allow device architectures to apply low-level features like hardware multi-
threading for maximal memory throughput.

Equation (4.9.3) accommodates a mathematical model to map theoretical performance
changes as hardware and software variables are altered, allowing the developer to better
understand the effects different software and hardware constructs for HPC computational
modeling applications using CPU/GPU computing systems. The development of predictive
models for computing follows three general approaches - analytical, profile, and simulation
based categories [92].

Simulation-based performance prediction uses an application that has modeled the
objective architecture in exacting detail and generates results from dynamic and random inputs -
accurate but computationally costly [92]. Profile-based performance prediction uses two stages
to develop the model; instrumentation is utilized to generate statistical information on a given
program run and analysis is used on these statistics to create an estimation of performance for a
given architecture [92]. The analysis-based performance prediction model derives a
mathematical equation that can estimate program behavior for specific architectures and
algorithms - this is the model utilized in this chapter and follows precepts established by the
worksof[66, 72, 92, 93].

All of the following discussions on the effects of hardware and software factors and any
resulting interplay are derived from altering the variables of equation (4.9.3) and illustrate
theoretical performance as consequence. The software factor Threads-Per-Block are denoted as
TPB and the theoretical change exhorted by different parameters is given as ETime in the
following discussion.

Table 20 categorizes the hardware factors with System A as the computing environment
contrasting the actual solution execution time against the effective time generated by the
alteration of input variables and is shown in milliseconds. Table 21 categorizes the software
factors with System A as the computing environment contrasting the actual solution execution
time against the effective time generated by the alteration of input variables and is shown in
milhseconds.

Table 22 categorizes the hardware factors with System B as the computing environment
contrasting the actual solution execution time against the effective time generated by the
alteration of input variables and is shown in milliseconds. Table 23 categorizes the software
factors with System B as the computing environment contrasting the actual solution execution

204

time against the effective time generated by the alteration of input variables and is shown in
milliseconds.

The degree of impact that the proper implementation of software and hardware factors
present is shown in Table 18 and Table 19 for System A and System B respectively. The
resulting factors of change are calculated as non-dimensional quantifier such that differences
from the original solution times are applied against the solution times that result when the
parameter/factors are expressed - the closer to zero the less effect the factor has on system
performance and the greater the magnitude beyond one the more negative the effect on
performance. The larger negative impact on performance is manifest as the lowering of the
number of SMP, the converse is also true and is expected given that the increasing of SMP
invariably increases the number of graphics cores from which to utilize in a given problem
domain.

Interestingly the relative effect of increasing the number of TPB has the same
consequence regardless of the computing system utilized. The relative equivalence of software
factors regardless of computing environments is to be expected as the algorithm should operate
independently if optimized - of course, this is not conclusive as the more dispersed the non-zero
elements, the greater the irregularity of memory addressing, memory bank conflicts and the
resultant performance degradation. This is evidenced by Table 18 as. the lowered number of
SMPs exposes the weakness of locality - higher relative latency due to lower hardware ability to
hide it. Regularity of the sparse structure can play a significant impact to the potential
performance benefit in CPU/GPU computing environments.

However, this is not conclusive as the analytical performance model derived is, as all
prediction models of this category, based on conservative measures of a given architecture and
problem domain - extrapolating too far beyond the initial derivation can create computational
artifacts in the results.

Table 19
Categorized software and hardware effects (System A)

Input
Hardware
Factor

Value
Factor of
Change

Software
Factor

Value
Factor of
Change

MA SMP 4 2.427 TPB 128 0.414

MB SMP 4 0.352 TPB 128 0.414

lOFT SMP 4 2.272 TPB 128 0.414

MA SMP 64 0.750 TPB 512 0.000

205

MB SMP 64 0.750 TPB 512 0.000

lOFT SMP 64 0.750 TPB 512 0.000

Table 20
Categorized software and hardware effects (System B)

Input
Hardware
Factor

Value
Factor of
Change

Software
Factor

Value
Factor of
Change

MA SMP 4 2.50 TPB 128 0.414

MB SMP 4 2.50 TPB 128 0.414

lOFT SMP 4 2.50 TPB 128 0.414

MA SMP 64 0.780 TPB 512 0.000

MB SMP 64 0.780 TPB 512 0.000

lOFT SMP 64 0.780 TPB 512 0.000

Table 21

Hardware factors and theoretical performance (System A)

Input Variable Value Time (ms.) ETime (ms.)

MA SMP 4 204,689.00 537,490.96

MB SMP 4 1,804,050.00 2,370,321.50

lOFT SMP 4 140,546.00 444,203.64

MA SMP 64 204,689.00 39,324.91

MB SMP 64 1,804,050.00 440,189.68

lOFT SMP 64 140,546.00 33,945.25

Table 22
Software factors and theoretical performance (System A)

Input Variable Value Time (ms.) ETime (ms.)

MA TPB 128 204,689.00 222,455.30

MB TPB 128 1,804,050.00 2,490,088.86

lOFT TPB 128 140,546.00 192,023.31

MA TPB 512 204,689.00 204,689.00

MB TPB 512 1,804,050.00 1,804,050.00

lOFT TPB 512 140,546.00 140,546.00

206

Table 23
Hardware factors and theoretical performance (System B)

Input Variable Value Time (ms.) ETime (ms.)

MA SMP 4 146,635.00 263,356.17

MB SMP 4 974,897.00 2,951,083.33

lOFT SMP 4 89,228.10 263,514.70

MA SMP 64 146,635.00 16,459.76

MB SMP 64 974,897.00 184,442.71

lOFT SMP 64 89,228.10 16,469.67

Table 24
Software factors and theoretical performance (System B)

Input Variable Value Time (ms.) ETime (ms.)

MA TPB 128 146,635.00 106,411.96

MB TPB 128 974,897.00 1192417.74

lOFT TPB 128 89,228.10 106,476.02

MA TPB 512 146,635.00 146,635.00

MB TPB 512 974,897.00 974,897.00

lOFT TPB 512 89,228.10 89,228.10

The perforaiance results of the single CPU/GPU computing systems have been shown to
be consistent for presented input unstructured mesh model configurations with varying sizes for
both System A and System B computing systems. This performance can be dramatically
affected by sometimes slight aberrations of input - from this single CPU/GPU paradigm the
multiple CPU/GPU methodology is analyzed and discussed in the next chapter.

207

CHAPTER 5

Full Candidate Application - Multiple CPU/GPU Computing System

This chapter focuses on the full solution to the candidate application within the context of
a multiple CPU/GPU computing system for both System A and System B. The full solution of
the computationally intensive candidate application is mapped to the CPU/GPU computing
system, distributed across independent nodes, and the resulting performance is analyzed to
determine how the hardware and software factors work together to impact the resulting
application performance. During the mapping, key computationally intensive kernels are
presented and associated GPU developments explored.

This chapter will ascertain how the hardware architectures of System A and System B
work together with the software factors to denote the application performance - key in this
discussion is the calculation of a computational complexity analysis for multiple CPU/GPU
computing systems which is a natural extension from the single version presented in the previous
chapter. The computational complexity analysis is actualized as a performance modeling
equation that can be used to project how different problem, software, and hardware parameters
will affect performance. Specific computational behavior of multiple CPU/GPU computing
systems is the exposure of the important cost of mtra-nodal and local host communication to the
performance of a computationally intensive application.

Understanding these variations in factors/parameters is essential as new computing
architectures arrive to get optimal performance for HPC computational modeling legacy and new
code development applications.

5.1 Mapping Full Candidate Application to GPU

The mapping of the full candidate application to the multiple CPU/GPU environment
extends from the previous chapter, detailing the mapping of the single CPU/GPU computing
system, and is developed and demonstrated for both System A and System B environments. The
previous chapter applied the CNC solver set in the context of a shared memory address
environment and this chapter grows the environment to include multiple systems each with its
own CPU/GPU architecture providing intra-node communication via MPI standard [28, 94]. The
ability of CPU/GPU computing systems to scale with multiple architectures is critical as HPC
applications have long embraced the increased performance provided by parallelizing large-scale

208

problems with domain decomposition techniques via MPI and much research in the GPGPU
computing community is targeting this objective [36, 69, 95-97]. The single CPU/GPU
computing system presented in the previous chapter passed the computationally intensive

solution to system of linear equations in matrix form Ax = i to a local GPU device where it can

be most beneficial - extending this paradigm to the multiple systems encompasses an extra level
of intra-nodal communication, e.g. MPI.

MPI is a standard for message passing systems with different implementations such as
MVPICH [26, 28] and historically dominates HPC modeling as an effective methodology for
application performance boosting [26, 28]. Implementations of the MPI standard define a tool
for connecting multiple machines and/or discrete CPUs as a logical whole in order to solve
problems that are computationally prohibitive in a single machine context [26, 28]. This
methodology is similar to the Parallel Virtual Machine (PVM), the predecessor of MPI [26,
28], but the differences are important.

PVM and MPI take different approaches as to the defining and utilization of distributed
topologies. MPI allows the user to easily create virtual topologies [98] that must be explicitly set
in PVM [99, 100]. The abstraction of topologies with MPI is one of the reasons for its
popularity; software developers do not have to focus on different architectural environments
when creating an application in MPI. The use of virtual topologies has another benefit - many
MPI implementations optimize the definition of the system based on the physical nodes in the
current cluster. The MPI implementation simply alters the identifications of the various
processors contained in the defined communicator to reflect the optimal distances of the actual
machines contained in the system [98, 100]. PVM will allow for the communication, not only
between heterogeneous architectures but also between different languages - e.g., a C-Code
program can interface to a FORTRAN-Code program and vice-versa. PVM will probe for
differences in architecture to allocate native resources as needed. MPI, whose chief design is
around both performance and portability, assumes a consistent connection via a defined world
communicator [98, 100]. PVM is designed for operation within a heterogeneous set of
architectures, while MPI can do this also, it is not explicitly defined within the standard itself
[98, 100].

MPI was chosen as the standard for intra-node communication for the presented
candidate composite process flow modeling application as this represents a significant body of
research in GPGPU computing [101-104] and porting legacy code to utilize CPU/GPU systems
requires a robust and portable solution that encompasses this paradigm. The key
computationally intensive Kernels encompassed by the multiple CPU/GPU computing systems
are discussed next.

209

5.1.1 Key Computationally Intensive Kernels. The key computationally intensive
Kernels for the multiple CPU/GPU computing systems introduced in this chapter are evolved
from two distinct sources. The first source is a direct result of the utilization of sets of single
CPU/GPU computing systems from which the multiple CPU/GPU computing system is formed
as each individual CPU/GPU machine involved brings with it the local computationally intensive
Kernels that are effected by a separate machine architecture. The second source is directly
related to the communication vehicle for the multiple CPU/GPU computing systems, MPI and
any communicational overhead it brings to the total system is magnified by the significant GPU
and CPU communications via the local PCIe bus - a noted bottleneck in single CPU/GPU
systems now magnified by the number of distinct nodes in the communication world of MPI [69,
97].

5.1.2 GPU Code Developments. This sub-section establishes GPU code developments
such as API tools/libraries and the data-structures/layouts for the definition of the multiple
CPU/GPU computing system. Nvidia's CUDA API has remained ahead in the GPGPU
computing community [1,2, 24] and this continues as interest grows in CPU/GPU computing
clusters with the provision of the Unified Virtual Address (UVA) space [37, 62, 105].

UVA allows CUDA to map GPU device buffers into a global virtual address space and
then queries the system to determine if a desired address is in GPU or CPU space. UVA then
signals CUDA to execute a PCIe communication or local memory call, depending on the
physical location of the virtual address - theoretically allowing for direct MPI buffer transfers.
However, CUDA UVA was not utilized with the presented candidate application as the construct
did not come to fruition until compute architecture 2.0 and this leaves out System A [58]. So in
the interest of consistency was not pursued in this dissertation.

Given that the individual GPU devices in the multiple CPU/GPU computing systems
have no direct communication to outside nodes a double-copying is inferred [105]. The
individual CPU/GPU computing system executed upon a local sub-domain of the global problem
space, as per domain decomposition [26, 28], passing the computationally intensive system of
linear equations defined as a sparse matrix system to the local GPU. The GPU executes the
system using the PCG iterative solver, as with the single CPU/GPU system, and returns the result
back across the PCIe bus to the CPU where it is then stored in the defined MPI communication
buffers to be shared with other nodes in the system - unavoidably increasing the latency as there
must now be explicit staging of memory buffers for collective and point-to-point calls [94] and
GPU to CPU to MPI and back the same path at each iteration of the algorithm.

The full candidate application is validated against an analytically derived solution for a
simple 2D radial injection circular plate mold geometry model using the multiple CPU/GPU
computing system next.

210

5.2 Validation of Full Candidate Application on Multiple CPU/GPU

The correctness of the full candidate application for the multiple CPU/GPU computing
systems is ensured via the examination of flow-front progression and injection port pressures of
numerical solutions for CPU and GPU against the correspondingly analytical results. As before,
the model used for validation is a simple 2D circular plate with the resulting analytical equation.

The simple model being used in this chapter is a radial flow in a circular plate with a

radius of 10 cm and an iimer radius of 0.15 cm shown in Figure 56. The inner radius, i?Q, is

subjected to a constant flow rate2. The thickness of the cavity is//, the pressure is P, resin

viscosity is /J. , the permeability of the fiber preform is K, and the porosity of fiber compaction

is^. The flow front radius at any time / is given by [89]:

Rit) Qt
Tt(j>H

Rl (5.1)

The corresponding expression for injection pressure, which varies with time, is given by [89]:
f ^ f ^(.\\\

^i„
InKH

Rif)
R

(5.2)
0 yy

,/?-: ' _^^

"^Hj

' ■ ■
" ^A-'*" •

;«'^^^^^H

. . . ■ 1
Figure 51. 2D circular plate validation model (not to scale).

The following physical parameters are used in this analysis:

cm
Q = 2A , permeability/r = 44.0e-08cm-, a viscosity/^ = 0.02^05", a porosity of(^ = 0.805,

sec
a time step A? = 0.5 sec, and an element thickness//= 0.742cm . The circular plate model
involved a computational mesh of 1,344 nodes and 2,560 3-noded triangular elements. Figure 52

211

and Figure 54 display the flow-front progression for System A and System B respectively and
clearly define accuracy with the analytical value. Figure 53 and Figure 55 display the inlet
injection pressure for System A and System B respectively and clearly define accuracy with the
analytical value.

The flow-front and inlet injection pressure values are accurate so the full candidate
solution for the multiple CPU/GPU computing systems is presented next with a focus on initial
performance evaluation using the multiple CPU/GPU computing systems.

0,00

,.»»*^
8,00 ^^,,*«^^***^

6.00

^-^^"^^^

4,00

^ f Analytical

2,00 /

7
X CPU-MPI (2 Partitions)

O GPl,f-MPI (2 Partitions)

0,00 I
0 2 8 12 16 20 24 28 30 34 38 40 44 48 ?0 54 58 60 64 68 ^0 74 78

Time Step

Figure 52. Validation of multiple CPU/GPU for flow-front progression (System A).

212

120

100

SO
o

% 60

ii

40

 Analytical

X CPU-MPI(2Paititious)

O GPU-MPI(:Pai-titionsi

0 2 S 12 16 20 24 2S 30 34 38 40 44 4S ^0 54 58 60 64 68 70 74 78

Time Step

Figure 53. Validation of multiple CPU/GPU for inlet injection pressure (System A).

10.00
^^^^^

8,00 ^.Jm^^^"^^^
r*

^^i^St^'^
s S^t^^* ■3 6.00 ^%r^
o fyf^*

^ 4.00
o
E f

2.00 r
 Analytical

X CPU-MPI(2Paititions)

0.00

/ O CTPU-MPI(2PaLtitioiis)

0 2 S 12 16 20 24 28 30 34 38 40 44 48 50 54 58 60 64 68 70 74

Time Step

Figure 54. Validation of multiple CPU/GPU for flow-front progression (System B).

213

100

^.^JSMIS-***********

so ^,^-*****'**^^'^
o ^r*"^
% 60

/
£
N-*' r

40

/ Aiiiilvtical
20

X CPU-MPI(2Paititioiis)

O GPU-MPI(2Paititions)

S 12 16 20 24 28 30 34 3S 40 44 48 '■0 54 58 60 64 68 70 74 If.

Time Step

Figure 55. Validation of multiple CPU/GPU for inlet injection pressure (System B).

5.3 Initial Full Candidate Application Performance on Multiple CPU/GPU

Much of the establishment of key computationally intensive Kernels for the multiple
CPU/GPU computing systems is a reflection of the single CPU/GPU computing system from the
previous chapter. The single system provides the building blocks of the multiple systems leaving
the effective performance of the multiple systems to the parlance of latency mitigation as a
product of standard MPI communication overhead [26, 28] and noted CPU/GPU costs [106-109].

5.3.1 System A. The full candidate solution for multiple CPU/GPU computing systems
was applied using System A and is discussed in this sub-section. The initial problem domain was
partitioned into various sub-domains each to be executed on a single CPU/GPU computing
system. The multiple sub-domain results are then compared against the CPU-only, and the
CPU/MPI solution times.

Table 24 shows the total solution times, in milliseconds, for increasing numbers of
partitions using as input unstructured mesh MA expressed using CSR data format compression
with System A computing architecture. The observed total solution times in all cases are higher
for the multiple CPU/GPU computing system over the single CPU-only and CPU plus MPI
which illustrates the significant cost potential of the extra layer of latency produced by uitra-node
communication within the execution of the global solution domain. The slight decrease at 2-
partitions for the GPU plus MPI model is due to the cache effect of increased local memory to
allow more of the problem to be immediately available for solving.

214

Table 25 shows the total solution times, in milliseconds, for increasing numbers of
partitions using as input unstructured mesh configuration MB expressed using CSR data format
compression with System A computing architecture. The observed total solution times for GPU
plus MPI are more promising as the increased computational loads on the individual nodes using
the larger sized input mesh are large enough to overcome the latency of intra-node as well as the
PCIe bottleneck - until 16 sub-domains are created and computational loads on individual nodes
in the system become too poor to overcome increasing latency for this fixed problem size. Figure
56 and Figure 57 visually depict the observed performance using System A as the computing
envirormient and different sized mesh configurations MA and MB respectively.

The more structured meshes MA and MB depict distinct performance differences when
employing MPI with the local GPU. The smaller model MA illustrates no performance benefit
for MPI with GPU over MPI without GPU as the smaller model does not have enough
computational intensity at the local GPU level to overcome the cost of intra-nodal
communication generated by MPI [70, 105]. The larger model MB reveals a slight performance
boost when using MPI and the local GPU for the global count of partitions that remain below 16
when the intra-nodal communication cost once again become the dominating factor of

performance. The more unstructured mesh model lOFT shows a negligible difference of MPI
with or without utilizing the local GPU due to the more evenly distributed non-zero elements,
each computing node in the system is given nearly equal divisions of work and the so throughput
latency is better handled, thus hiding the intra-nodal communication cost of MPI better.

Table 26 shows the total solution times, in milliseconds, for increasing numbers of
partitions using as input unstructured mesh configuration lOFT defined earlier expressed using
CSR data format compression with System A computing architecture. The observed total
solution times for GPU plus MPI are higher than the corresponding CPU plus MPI - the
performance is closer than the results shown by the mesh MA as the numbers of non-zero
elements is greater for lOFT but the intra-nodal communication derived from the coarser-grained
parallelism of MPI communication creates higher levels of latency that must be mitigated [69,
105, 109].

The next sub-section will discuss the results of the multiple CPU/GPU architecture
defined by System B.

215

Table 25

Multiple CPU/GPU performance in milliseconds with mesh MA (System A)
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 2,749,450.00 418,440.00
CSR 2 1,666,960.00 1,604,200.00
CSR 4 825,989.00 1,357,890.00
CSR 16 260,669.00 1,461,590.00

Table 26
Multiple CPU/GPU performance in milliseconds with mesh MB (System A)

Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 77,163,900.00 4,219,610.00
CSR 2 20,169,400.00 16,985,600.00
CSR 4 9,633,960.00 8,570,300.00
CSR 16 2,495,580.00 23,956,100.00

Table 27
Multiple CPU/GPU performance in milliseconds with mesh lOFT (System A)
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 6,649,810.00 140,546.00
CSR 2 1,206,160.00 1,246,120.00
CSR 4 621,867.00 688,750.00
CSR 8 321,710.00 545,930.00

216

3.0

System A: Mesh MA, CSR Compression

2.5 ■

B
H 1.0

0.5

0 n

•-—

i 4
Number of Partitions

16

 CPUSenal GPU+MPI CPU+MPI
\^ J

Figure 56. Multiple CPU/GPU computing system - mesh MA (System A).

r

90.0

80.0

70.0 -

System A: Mesh MB, CSR Compression
N

2 60.0

^ 50,0 -
^1

a; 40.0
s
H 30.0

20.0

100

0.0

'.z.T..z.r..r - - - » "

J ■ 4 16

Niimljer of Partitions

1 CPUSenal GPU+MPI CPU+MPI
V J

Figure 57. Multiple CPU/GPU computing system - mesh MB (System A).

217

System A: lOFT Model (CSR Compression)
,'

1

6
 CPU+MPI

5 GPU+MPI

S4
X

.§ 3
H

 CPU Senal

0

1
* **• ".A* - ft^i^ .^ , ^^, ^ ^

-•-•-•-•

Partitions

Figure 58. Multiple CPU/GPU computing system - mesh lOFT (System A).

5.3.2 System B. The full candidate solution for multiple CPU/GPU computing systems is
executed in the System B computing environment and is discussed in this sub-section. The initial
global problem domain is partitioned into various sub-domains and passed among various
discrete processing nodes to be executed in the maimer of a single CPU/GPU computing system.
The multiple sub-domain results are then compared against the CPU-only, and the CPU/MPI
solution times.

Table 27 shows the total solution times, in milliseconds, for increasing numbers of
partitions using as input unstructured mesh configuration MA expressed using CSR data format
compression with System B computing architecture. The observed total solution times in all
cases involving sub-domain partitions reveal that the GPU plus MPI construct outperforms the
CPU/MPI model. However this positive benefit of combining GPU and MPI is not observed in
the larger input mesh configuration MB as can be seen in Table 28. This observed performance
degradation for the larger element mesh is a stark contrast from the behavior manifested in
System A, where a larger mesh resulted in better performance as the computationally intensive
operations increased.

Table 29 shows the total solution times, in milliseconds, for increasing numbers of
partitions using as input unstructured mesh configuration lOFT expressed using CSR data format
compression with System B computing architecture. The observed solution times for the lOFT
model, while executing on the more advanced CPU/GPU computing System B never manages to
overcome the latency incurred by the intra-nodal communication emergent from the use of

218

multiple MPI communication calls - evidence of a faster and more efficient hardware that
minimizes costs at the local host and conversely exposing the MPI communication costs.

Figure 59 and Figure 60 are visual depictions of the observed results of the multiple
CPU/GPU architecture System B listed in Table 27 and Table 28, and Figure 61 illustrates the
data given in Table 29. The next sub-section will examine, analyze and discuss the observed
initial performance results for multiple CPU/GPU systems represented by computing System B
and System A.

Table 28
Multiple CPU/GPU performance in milliseconds with mesh MA (System B)
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 420,980.00 168,570.00
CSR 2 767,364.00 220,462.00
CSR 4 448,665.00 98,034.20
CSR 16 307,081.00 44,392.40

Table 29
Multiple CPU/GPU performance in milliseconds with mesh MB (System B)
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 6,306,240.00 1,197,350.00
CSR 2 1,675,850.00 2,995,870.00
CSR 4 872,019.00 2,172,520.00
CSR 16 318,895.00 1,490,310.00

Table 30
Multiple CPU/GPU performance in milliseconds with mesh lOFT (System B)
Data Compression Partitions CPU + MPI (ms.) GPU + MPI (ms.)
CSR 1 616,770.00 89,228.10
CSR 2 124,995.00 249,532.00
CSR 4 73,081.40 145,577.00

CSR 8 41,426.60 118,746.00

219

f ^
System B: Mesh MA, CSR Compression

0,8

0.7 ■■

t 0 6 *<* **•
^ *^

■h O-"^ ^^ **--_-
^ 0,4 ** —
s ""'*••«•«* ^
H 0,3 •^ «*,

0 2
"

0,1

0 0
. 4

Number of Partitions
16

 CPUSenal GPU+MPI CPU+MPI
V j

Figure 59. Multiple CPU/GPU computing system - mesh MA (System B).

System B: Mesh MB, CSR Compression

60

5,0

4,0

4. 3,0
c

2,0

1,0

0,0
4

Number of Partitions
16

■CPU Serial GPU+MPI C'PU+MPl

Figure 60. Multiple CPU/GPU computing system - mesh MB (System B).

220

System B: lOFT Model (CSR Compression)
700

600

500

o 400 u
41

a" 300
.a
H

200

100

- - C'PU+MPI

•• GPU+MPI

 CPU Serial

"■

Partitions

Figure 61. Multiple CPU/GPU computing system - mesh lOFT (System B).

5.3.3 Initial performance analysis. The execution of the unstructured mesh input files,
MA, MB and lOFT for both computing systems exposes some interesting performance
behaviors, notably a divergence of performance for the different computing environments. The
observed results for both System A and System B lower in total solution time as the number of
sub-domains increases - excepting at 16 partitions, as System A then starts to ratchet up in
solution times for both input meshes MA and MB. The input mesh lOFT displays almost no
difference between CPU plus MPI and GPU plus MPI - the impact of intra-nodal
communication is lessened for this model within the System A computing system environment.

System B performs better using GPU plus MPI over CPU/MPI for the smaller input mesh
MA but this is the opposite of that observed with the larger mesh MB. System B has both a
larger set of registers and shared memory than System A and therefore able to hold larger
amounts of data to increase throughput allowing better utilization and conversely exposing
higher combined latencies of local CPU-GPU and intra-nodal communications. The result is the
counter-intuitive effect of a less computationally intensive problem performing better than the
larger and more computationally costly input mesh MB - an artifact of increased memory
complexity and no direct connection to the MPI library calls.

The counter-intuitive effect of better hardware creating reverse performance for larger
problem domains, i.e. less computationally intensive models can perform better than more
computationally intensive models using a device that is optimal for systems requiring higher
numbers of floating point operations can be seen in Figure 61. Figure 61 shows a nearly constant

221

difference from the GPU plus MPI and CPU plus MPI which is likely due to the more efficient
execution of the GPU device - exposing a larger amount of intra-nodal communication cost for
the global system.

The software factors that influence the performance of multiple CPU/GPU computing
systems is discussed next followed by the corresponding hardware factors.

5.4 Software Data-Structures/Layout Factors

The previous section was an initial performance analysis for unstructured mesh inputs via
the multiple CPU/GPU computing systems defined as System A and System B and produced
mixed results - System A displayed a performance boost for the larger input mesh MB but not
MA and System B displayed the converse. However neither approached the same level of
performance observed by the single CPU/GPU systems of the previous chapter and neither
illustrated definitive performance increase for input mesh lOFT - although System A yields a
closer result. The software variables involved in the observed results of the initial fiill solution
with multiple CPU/GPU computing systems are examined to identify potential factors that can
hinder performance of the presented candidate application. The first software factor to be
examined is intrinsic to memory-bound problems such as the presented candidate composite
process flow modeling finite element based application - data compression format.

In the interest of brevity, the reader is referred to chapter 4 for a more detailed reasoning
for the execution of the BCSR2x2 format over GSR which was defined for the initial
performance results observed. The same system parameters that exist at the local single
CPU/GPU computing systems are valid for the multiple CPU/GPU structure presented in this
chapter, and the potential increase in locality via the utilization of the BCSR2x2 data
compression format [52-54] is discussed next.

Figure 62 and Figure 63 show the multiple CPU/GPU performance with System A and
System B respectively using only BCSR2x2 data compression format for input meshes MA and
MB. The homogeneous comparisons of the BCSR2x2 show that System A gains no positive
performance benefit using the smaller input mesh MA but does for the corresponding larger
mesh MB once 16 partitions is reached whereas the GSR format showed that at 16 partitions the
performance for this input mesh dropped. This difference in behavior corroborates the precept
that locality defined at the software data layout can effect behavior of HPC applications.

Figure 66 and Figure 67 show the performance of the input mesh lOFT for System A and
System B respectively comparing the GSR and BCSR2x2 compression formats. The less regular
mesh defined by the lOFT model displays a consistent benefit when expressed using the

222

BCSR2x2 compression format over the CSR format. These observed performance results are
consistent with the input mesh MA, which contains a similar number of non-zeros but in a much
less complex geometry.

System B displays similar performance behavior as System A when the data
compression layout is altered to BCSR2x2 but to a larger magnitude. System A showed
performance benefit at 16 partitions for the input unstructured mesh MB whereas System B
illustrates this same benefit at 4 partitions. And while System A has no discernible advantage of
BCSR2x2 for the input mesh MA, System B does show a lower total solution cost, albeit not
very impressive. Table 30 and Table 32 are the observed results utilizing the BCSR2x2
compression format for System A and System B respectively.

The observed results are taken within the context of the BCSR2x2 data compression
formats only, with the base line defined as the cost of execution for the global solution using
BCSR2x2 - i.e. the full solution cost using the BCSR2x2 compression format using a CPU/GPU
computing system at a single processor level, with no domain decomposition applied. The
effects of spatial locality are applied in a mixed compression environment next.
Table 31
Multiple CPU/GPU performance in seconds (System A)

Data Compression Partitions Mesh MA Mesh MB
BCSR2x2 1 418.44 4,219.61
BCSR2x2 2 1,512.94 14,223.50
BCSR2x2 4 1,015.11 7,429.34
BCSR2x2 16 715.41 3,234.68

Table 32
Multiple CPU/GPU performance of lOFT model in seconds (System A)

Data Compression Partitions Mesh lOFT
BCSR2x2 1 140.69

BCSR2x2 2 1,020.35

BCSR2x2 4 660.38

BCSR2x2 8 551.57

Table 33
Multiple CPU/GPU performance in seconds (System B)

Data Compression Partitions Mesh MA Mesh MB
BCSR2x2 1 217.76 1,931.31

BCSR2x2 2 233.34 2,151.81

BCSR2x2 4 168.96 1,202.46

223

BCSR2x2 16 129.29 549.83

Table 34
Multiple CPU/GPU performance of 1 OFT model in seconds (System B)
Data Compression Partitions Mesh lOFT
BCSR2x2 1 89.07

BCSR2x2 2 169.63
BCSR2x2 4 133.66
BCSR2x2 8 132.52

Figure 64 and Figure 65 show the comparison of the multiple CPU/GPU computing
systems using different data formats of CSR and BCSR2x2 with System A and System B
respectively. System A shows a positive benefit of using the BCSR2x2 format over the CSR
format but only for a limited number of sub-domains for the input unstructured mesh MB and
even less for the smaller input mesh MA. This observation illustrates that increasing spatial
locality for the System A architecture can have absolute benefit as BCSR2x2 will improve on
the CSR format and not just illustrate an ever increasing computational benefit as compared to a
single compression format in all cases. System B does not follow the same pattern as System A.

The multiple CPU/GPU computing system defined by System B does not show any
positive benefit for the use of the BCSR2x2 data compression format when direct comparisons to
CSR are made - excepting a slight improvement for 2-partitions using the MA input likely due
to cache effects. These observations are further elaborated in the next section on hardware
factors as the immunity to the increased locality of System B when using BCSR2x2 is a
consequence of this. Table 34 and Table 35 show the observed results for the comparison of CSR
and BCSR2x2 data compression formats for System A and System B respectively. The less
regular input mesh lOFT shows a more consistent behavior for both computing environments.

Table 35
Midtiple CPU/GPU performance in seconds -formats (System A)

Partitions
Mesh MA
(CSR)

Mesh MA (BCSR2x2) Mesh MB (CSR)
Mesh MB
(BCSR2x2)

1 418.44 418.44 4,219.61 4,219.61
2 2,009.79 1,512.94 15,815.20 14,223.50
4 1,011.24 1,015.11 7,651.25 7,429.34
16 702.69 715.41 3,261.84 3,234.68

224

Table 36
Multiple CPU/GPU performance in seconds -formats (System B)

Partitions
Mesh MA
(CSR)

Mesh MA (BCSR2x2) Mesh MB (CSR)
Mesh MB
(BCSR2x2)

1 168.57 217.76 1,197.35 1,931.31
2 335.92 233.34 2,138.79 2,151.81
4 157.90 168.96 1,038.69 1,202.46
16 124.02 129.29 495.33 549.83

System A: Multiple CPU/GPU Performance
16 0

14.0

12.0

% 10,0

2 08,0

S 06,0
H

04.0

02.0

0,0

'"H^

^^^

"■""-.

■--..

 Multi-PaititionMA (BCSR2x2)

 MiUti-PaitifionMB (■BCSR2.K2)

 SinglePaitition MB (BCSR2x2)

^<».^

""'■*-,,^^

2 Parts 4 Parts

Number of Partitions
16 Parts

Figure 62. Multiple CPU/GPU perfonnance BCSR2x2 compression (System A).

225

03.5

03.0

02,5

>■ 02,0
t
roi.5
a

01.0

0,5

0.0
2P

System B: Multiple CPU/GPU Performance
N

arts

"**•».

 MulU-PaititioiiMA (BCSR2x2)

 MiUti-Paititioii MB (BCSR2x2)

 Smgle Pmtition MB (BCSR2x2)

uts 4Paits 16 P

Number of Partitions

Figure 63. Multiple CPU/GPU performance BCSR2x2 compression (System B).

System A: Multiple CPU/GPU Performance
18.0

16,0

14.0

£n.o

\ 10,0

-sos.o
a
P 06.0

04.0

02.0

0.0

^=^^^...„
 Multi-Paititiou MB (CSR)

 MTilti-PaititionMA(BCSR2x2)

 MiUti-PaititionNB (BCSR2x2)

■■■'■"

2 Parts 4 Parts

Number of Partitions
lePaits

Figure 64. Multiple CPU/GPU performance mixed compression (System A).

226

System B: Multiple CPU/GPU Performance

s
H

02.0

01 ^

'"^^x-.

 Muln-Pmtition MA t^;'SRj

 Miilti-Pmtidon MB (CSR)

— -Miilti-PaititioiiMA (BCSR2x2)

 Miilti-Paitifion MB (BCSR2x2)

01.0

0.5

"--:■-■.. ^»^
**»^ *'*•'*,

^^^ **"'-..

»t,

0.0 1
2 Parts 4 Pai ts

Number of Pnrtitious
16 Parts

Figure 65. Multiple CPU/GPU performance mixed compression (System B).

Figure 66 and Figure 67 show the performance results for System A and System B
respectively for the input mesh configuration lOFT. The computing environments defined by
System A and System B illustrate general equivalence of performance benefit for increased
locality exposed by the use of BCSR2x2 - unlike the input meshes MA and MB. The more
regular input meshes MA and MB have lower irregular memory access patterns than lOFT,
exposing hardware differences to a greater degree - improving locality for the algorithm has
consistent results in both computing environments.

227

System A: lOFT Model
i-+UU

1200
 GPU(CSR)

1000
 GPU(BCSR2x2)

o 800
VI

"a 600

H
400

—^
-

200

Partitions

Figure 66. Multiple CPU/GPU performance mixed compression - lOFT (System A).

System B: lOFT Model
JUU

 GPLUCSR)
250

 GPU (BCSR2x2j

2~200
a
o
|l50

S
H 100

""""■"----. ^""^^

-^ ' =^.c^

50

4
Partitions

Figure 67. Multiple CPU/GPU performance mixed compression - lOFT (System B).

228

5.5 Hardware Architectural Factors

Tfce observed performance of the CPU/GPU computing systems using the unstructured
mesh input defined by MA, MB, and lOFT is affected not just by the software factors discussed
in the previous section but hardware factors as well. The presented candidate application
performed with mixed results using the multiple CPU/GPU computing system paradigm, and
switching to different data compression formats continued these amalgamated observations -
providing enhanced results for System A but less so for System B. The lower sensitivity to the
adjustment of data compression format of System B given the equivalence of partition counts
and input meshes implies an underlying hardware factor.

The architectural design of System B is defined as CUDA compute architecture 2.0 and
System A is defined as CUDA compute architecture 1.0 - significant architectural differences
for these systems exist. CUDA's thread concept is register-bound and with System B
embodying over 32,000 on-chip registers compared to System A with a little over 8,000
provides the ability of more resources for execution threads to remain viable - more importantly
is the existence of an actual cache structure for System B that is absent from System A.

The inclusion of the System B cache and higher memory device I/O allow for higher
throughput and a finer granularity than that provided by System A. This finer granularity and
faster memory I/O for System B creates less sensitivity to the locality alterations provided via
the BCSR2x2 data compression format, as the multiple CPU/GPU computing system has less
problems with data locality than does System A. Therefore optimizing the performance of the
presented candidate application has different requirements for the different architectures that
need to be understood.

Figure 64 and Figure 65 exemplify the importance of a proper coordination of software
and hardware factors for optimizing HPC applications. Figure 64 shows that System A is
positively impacted with the application of BCSR2x2 due to a lack of hardware-level cache
whereas utilizing BCSR2x2 to increase locality for System B is both unnecessary and potentially
deleterious to performance as shown in Figure 65 using input meshes MA and MB. Increasing
the number of elements in a single clock cycle with the implementation of BCSR2x2 using the
multiple CPU/GPU computing system defined by System B is likely over-utilizing the on-chip
hardware resources as competition increases.

The next section discusses the observed full solution performance using an augmented
version of equation (4.9.3) fi-om chapter 4 such that the performance of multiple CPU/GPU
computing systems is endorsed.

229

5.6 Computational Complexity Analysis

This section establishes the mapping of the observed performance and the derived
complexity analysis for the multiple CPU/GPU computing system, detailed in Appendix A. The
theoretical performance estimates for System A are discussed first followed by those for System
B where all results are generated under the assumption of CSR data compression format.

The complexity analysis model for the multiple CPU/GPU systems is a natural extension
from the previous chapter's derivation of the single CPU/GPU systems model - the results from
the single analysis model are incorporated as a critical component of the multiple analysis model.
However, the introduction of MPI as a communication amongst various sub-domains presents an
added level of communication abstraction given that the GPU cannot communicate directly with
the CPU it can neither communicate with the MPI library calls that can contain a significant
amount of overhead [105]. Building from equation (4.9.3) in chapter 4 and using value found

for T^p^, equation (5.3) with P^^ the number of sub-domains, N^j.^ the number of active threads

per block, and C the cost of combined combination of intra-node communication - assuming that

P^^ is no greater than 16.

T
T = gP"

mull spu T-j

"sd

(5.3)

The determination of the performance modeling equation for multiple CPU/GPU systems
is more involved than the single CPU/GPU system model - the individual architectures involved
can present obfuscated operational costs which accentuate the PCIe bottleneck of the single
system. Equation (5.3) depicts a change in computational cost when the number of sub-domains
reaches 16 as CUDA waits until a half-warp is instantiated before issuing a memory transaction
[37, 93] - this condition is meant to emulate this behavior across discrete systems.

The communication variable C from equation (5.3) is affected not only by the size of the
problem domain but also individual architectures and MPI implementations involved and it is the
inter-play of MPI and local CPU-GPU host communications that is generally deleterious to
multiple CPU/GPU computing systems [105, 106, 110]. The understanding of how these
communication factors interact with the determined modeling equation is discussed in the next
sub-section.

5.6.1 Relationship of MPI-GPU and CPU-GPU communication. The Multiple
CPU/GPU computing systems do not yield optimal parallel performance as expected when given

230

P processors and a sparse matrix with N, total non-zero elements and R local GPU registers

i.e. does not result in — benefit [28]. The reason is that as the initial system of N_ elements is

broken down into smaller sets that are held at the local GPU device yields more latency to hide
and correspondingly less computational intensity to utilize GPU resources. This behavior was
observed to be consistent across System A and System B for both input meshes when adjusted

for local GPU register counts and associated A'^. elements.

The expected behavior of a given computationally intensive application can be seen as

related to the percentage of total A^_ elements held locally at the GPU device and the number of

partitions distributed across the global system. The percentage of total A^. elements held locally

is given by equation (5.4) and was used as the independent variable to map the observed multiple

CPU/GPU system performance against the optimal parallel behavior—.

R^
N.

(5.4)

The ratio of the optimal parallel performance and actual performance for a given value of

R defines the performance deviation from ideal due to the local CPU-GPU host and MPI

communication inter-play. These deviations were mapped using regression such that NZ,^^^i is

the ratio of the total number of non-zero elements, A'^,, from the global problem domain held by

the local GPU device and X^ is the value of the deviation computed as the ratio of ideal

T
parallelism —^ and the actual execution time for the given number of partitions Pand execution

time for the serial versionT^ represented as the solid BLACK lines in Figure 68, Figure 69,

Figure 70 and Figure 71. These are shown for System A as Figure 68 and Figure 69 for input
meshes MA and MB respectively - Figure 70 and Figure 71 illustrate these same factors for
input meshes MA and MB using System B.

The equations revealed by regression, shown for convenience in Figure 68, Figure 69,
Figure 70, and Figure 71 as the dashed RED lines, vary with (5.4) as input but can be easily

replaced by the number of processors P as the proportion of A'^. elements held by a local GPU

device is directly related - this same precept holds for input mesh lOFT. The equations derived
via regression have a Pearson Product-Moment correlation coefficient of 1 in all cases, the
coefficient dependency is one-to-one [111] - i.e., exact match with the deviation from ideal

represented as X^ in the figures. The approximated equations derived with regression from X

231

are degree 3 for all models and essentially isolate the overhead of CPU-GPU local host and intra-
nodal communication costs. These approximated polynomial equations are employed as an
asymptotic measurement. Therefore, by the definition of asymptotic behavior [91], the
relationship of MPI and local CPU-GPU communication effects on multiple CPU/GPU
computing systems can be shown as (5.5).

O(R') (5.5)

The equations derived via regression are specific to the observed performance for a given
input mesh and architecture, but extending the number of partitions i.e. increasing independent
variable against equation (5.5) and applying some constant K define the cost of intra-nodal and
local CPU-GPU host communication will not be greater than cubic.

The asymptotic equation (5.5) is compared to the equations that were derived using
regression for both System A and System B. Figure 72 and Figure 73 show the asymptotic
behavior of the input meshes MA and MB for System A respectively and Figure 74 Figure 75
show input meshes MA and MB for System B. The results are shown in Figure 76 and Figure 77
for input mesh lOFT using computing System A and System B respectively. These figures show
that regardless of the number of partitions/sub-domains the theoretical cost of local CPU-GPU
and intra-nodal communication, represented as the solid line, indeed stay below cubic,
represented as the dashed line, for all models and both computing system environments.

System A: Mesh MA
45.0

s -10,0
•-^0^

<M
E 35.0

H
,^l)l)

<u
25,0

■^-

20.0

■^-^ 15.0 ^
.3 1(1(1
H
« -1 (1
3 •^
-f u.o

 Regression ■/^

y

y= 1.412x^- 10.378x^+35.926x- 2.5.96
R-=l

4.40 8.80 :i.20 54.00

NZ. locitl

Figure 68. Deviation fi-om ideal mapped with regression multiple CPU/GPU mesh MA.

232

System A: Mesh MB
N

^P .y^
,j^''

 Regression
^

H
_. 20.0
s

■a
^ 15.0

^^^- _^-

yi

^10,0
'/

S

E 5(3
3

^, 0,0

fV y = 4.4302x^ - 35 411X- + 93 051 x
/ R- = 1

-61 071

1.14 2.33 4.8 10.02
NZ|„tjj

J
Figure 69. Deviation from ideal mapped with regression multiple CPU/GPU mesh MB.

r N

^6.0

System B: Mesh MA

1«

^.

E 4.0

^3.0

^2.0

E

 Regression yf

E 1.0 V = 0.807X-'- 6.0118X-+ 14.393x- 8.1886
3

-^ 0.0
R^=l

17 50 35,00 "0.10 280.22

^^loral
V J

Figure 70. Non-zeros held locally (mesh MA) and factors off with multiple CPU/GPU.

233

System B: Mesh MB
^30,0

••r.

I 25,0

H — 20.0
«

■a
^ 15.0

s
-^ 10.0

^ 5.0
!3
3

Jf 0.0

X.

— Regression

V

y = 2.5259X-'- 16.345x^+ 36.498x- 21.68

4.60 ,9.10 18.20 "2.90

NZ. Io(»l

Figure 71. Non-zeros held locally (mesh MB) and factors with multiple CPU/GPU.

System A: Mesh MA
40.0

35.0

30.0
■h
^ 25.0

S 20.0
a>
S 15.0
H

10.0

5,0

0.0

 Theoretical MPl-GPU

 AsvTOptotic Upper-Bound
/

/
/

/
/

/ >

128 512 1024

Partitions
2048 4096

Figure 72. Asymptotic behavior of MPI and CPU-GPU communication (MA, System A).

234

SvstemA: Mesh MB
800,0

700,0

600 0
h
'^ 500,0
X

i 400,0
<u
S 300 0
H

200,0

100,0

0,0

 Theoretical MPI-GPU

 Asymptotic Upper-Bound
/

/
/

/
/

/
/

128 512 1024

Partitions
2048 4096

Figure 73. Asymptotic behavior of MPI and CPU-GPU communication (MB, System A).

System B: Mesh MA
~\

3,0 Ij
 Theoretic;!] MPI-GPU

^ 2 0

oj 1,5
s
^ 1,0

— — Asymptotic Upper-Bound

/

1/
1/

1/
U

0.5 y
128 512 1024 2048 4096

Partitions
V J

Figure 74. Asymptotic behavior of MPI and CPU-GPU communication (MA, System B).

235

Svstem B: Mesh MB
50.0

45.0

40 0

^ 35,0

X 30.0

I 25.0

I 20.0

^ 15.0

10.0

5.0

0.0

 Theoretical MPI-GPIJ

 Asymptotic Upper-Bomid

/
/

/
/

/ /
/ /

/ /
/ /

/ /

/ /

i; 512 1024
Partitions

2048 4096

Figure 75. Asymptotic behavior of MPI and CPU-GPU communication (MB, System B).

f N

System A: Mesh lOFT

35 0 Theoretical MPI-GPU
/

30.0

1-1

 As\-niptotic Upper-Bouiid /
/

/
/

/
\ 20,0

't 15 0 ■

/
/

'^ 10.0 / y^
/ y^

5.0 -

0.0
i:

•

8 512 2048 40 ?6
-5.0

Partitions
^)

Figure 76. Asymptotic behavior of MPI and CPU-GPU communication (lOFT, System A).

236

System B: Mesh lOFT
3.5

3.0

h 2.0

1.5

1.0

0.5

0 0

-0.5

■Theoretical MPI-GPU

Asymptotic LJppei-Bound

i:8 5i: 2048 40 36

Partitions

Figure 77. Asymptotic behavior of MPI and CPU-GPU communication (lOFT, System B).

The next sub-section examines the theoretical performance resuhs using the model given
by equation (5.3) and altering hardware factors.

5.6.2 Comparison of performance modeling. The Multiple CPU/GPU computing
system performance predictive model is compared to the actual time for each sub-domains for
both System A and System B for input meshes MA and MB with the same input parameters.
Figure 78, Figure 79 and Figure 80 show a strong correlation to the modeled performance given
by equation (5.3) and the actual fiill solution execution time for the multiple CPU/GPU system
defined by System A. Figure 81, Figure 82 and Figure 83 show a strong correlation to the
modeled performance equation (5.3) and the actual fiill solution execution time for the multiple
CPU/GPU system by System B.

237

System A: Performance Modeling
\

 AcUial Time

2.0 ».,^^^ — ■- Estimated Time

" 1 ?
^^^*^.

T
im

e
(s

ee
s.

^****i<i.,^_^ «.

0.5

4 16
Number of Partitions

(Mesli MA)
.- J

Figure 78. Multiple CPU/GPU theoretical performance with input MA (System A).

System A: Performance Modeling
18,0

16,0

14,0

Cn.o

^ 10.0
u
e s.o

P 6.0

4.0

2.0

0.0

^**'X^ — ~ Estimated Time
^"^^^

^^-^fc.. "■**

^^*****n^_ "^ •»»,

~

16
Number of Partitions

(MesliRIB)

Figure 79. Multiple CPU/GPU theoretical performance with input MB (System A).

238

System A: Performance Analvsis
■) ^

% 1.0

O.D

0.0

>^

X

X
<-^ X
^**«*i»,^„^ X

^^*'^*^«fc^ ■x

^^■*««*«-^ X
^^**'*»*,^ X

Actual Time

~ - Estimated Time

■^ .

Number of Partitions
(Mesh 1 OFT)

Figure 80. Multiple CPU/GPU theoretical performance with input lOFT (System A).

System B: Performance Modeling

350 —— Actual Tmie

300

<Xs^

X ^Xw^
X ^""x^^

X ^"'x*^,^
X. ^^- ,_

"* X ^

 Eiitiiiiated Time

.-r 250

^ 200 -
S
H 150 —

100

50

16
Number of Partitions

(MeshlNLA.)

Figure 81. Multiple CPU/GPU theoretical performance with input MA (System B).

239

Svstem B: Performance Modeling

1,5

I 1,0

0.5

0.0

"''*''%s>^ Estimated Time
•C**,^

"O*^^^
*H^*N,^

V ^"^s^^
X ^*^^^

X ^""^"^^^
^ ^^^^Sfc^

s» ^^*^,^
%, ^^****fc^ "^ ^^^^^_^

' "" *" •>• -.. 1

16
Number of Partitions

(Mesh MB)

Figure 82. Multiple CPU/GPU theoretical performance with input MB (System B).

Svstem B: Performance Analysis

300

250

200

E 150
H

100

50

s

X,

Actual Time

— Estimated Time

*^ •«

''^ *«• ««

_

Number of Partitions
(Mesh 1 OFT)

Figure 83. Multiple CPU/GPU theoretical performance with input lOFT (System B).

5.6.3 Contribution of Hardware Factors. This section establishes a relationship to
hardware factors and the resulting application performance via the derived equation (5.3),

240

adjusting hardware variables and then projecting against the actual performance of the
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)
on performance of the CPU/GPU computing system is theorized. The number of SMPs for each
of the defined computing systems is adjusted while the rest of the model is held as constant to
isolate the specific hardware.

Figure 84 and Figure 85 show that as the number of SMPs drops the corresponding
theoretical performance decreases for System A for both input mesh MA and MB respectively -
due to the lower computational power of the individual processing elements. Increasing the
number of SMPs for System A has the opposite effect on theoretical performance for both input
mesh MA and MB, directly related to the greater computational power that is leveraged at this
alteration. These theoretical performance results are consistent for Figure 84 and Figure 85 with
the decrease of SMPs, shown as the dashed RED lines, producing greater effect when compared
to the corresponding increase of SMPs shown as the dotted BLUE lines.

Figure 86 shows the less structured input mesh lOFT and depicts a theoretical behavior
across increasing partitions/sub-domains as roughly reflective of that for the more structured
input meshes MA and MB for System A shown in Figure 84 and Figure 85. Increasing the
number of SMPs will lower the total execution time and decreasing the number of SMPs will
raise the total execution time. However, the degree of change is significantly higher for the lOFT
mesh using System A - likely due to the more distributed nature of the mesh, generating a
correspondingly less regular sparse matrix and coercing more indirection in the data compression
format. The increased indirection of the sparse matrix-vector multiplication for the lOFT model
combined with lower SMPs means lower process throughput hindered by higher levels of
irregular memory access patterns, significantly deteriorating latency hiding.

Figure 87 and Figure 88 show that System B has a similar theoretical behavior to that
produced by System A; however the theoretical performance is much less pronounced.
Theoretical performance drops for both increasing and decreasing the number of SMPs at 4
partitions as the computational intensity becomes less salient and the communication costs for
intra-nodal communication overtake the final results.

The next sub-section discusses the software factors on theoretical performance for
multiple CPU/GPU computing systems.

241

System A: Adjust Hardware Factor (SMPs)
—

2,0 s»- ■**• Estunated Tijiie (4 SMPs)

 Estimated Tune (,64 SMPs)

d

i'l.o ^^*^Niii^^^^^ ™" *«■ »a,

0,5

0,0
16

Number of Partitions
(Mesh MA)

Figure 84. Multiple CPU/GPU performance with MA - hardware factor (System A).

f

20,0

IS 0

16,0

.j,14,0

T 12,0

% 10,0

\ 8,0

^ 6,0

4,0

2,0

0,0

V

System A: Adjust Hardware Factor (SMPs)

6

 Estunated Time (4 SMPs)

 Estimated Time (64 SMPs)

"^^

t 4 1
Number of Partitions

(Mesh MB)

Figure 85. Multiple CPU/GPU performance with MB - hardware factor (System A).

242

System A: Influence of SMP
6.0

5.0

o 4.0
X

LO

0.0

•- ~ Estimated Time (4 SMPs)

 Actual Time (16 SMPs)

 Estimated Time (64 SMPs)

«»,«»• ™*

»*...*,,*,,,,,,,.,.,,.,,,,,,,.,,,,,,,,,,,^..,,,,,,»,,,,,,.,,,,,i.,,,.

Number of Partitions
(Mesh lOFT)

Figure 86. Multiple CPU/GPU performance with lOFT - hardware factor (System A).

System B: Adjust Hardware Factor (SMPs)

s

X

•^
X

•"X
X

X
■s.^ X

^*X^ X

0.4

0,4 1 Estimated Time (4 SMPs)

•• Estimated Time (64 SMPs)
%, 0.3

wO.2

3 0,2 ^^^^' 1

0.1

O.I

0.0
4

Number of Partitions
(Mesh MA)

16

Figure 87. Multiple CPU/GPU performance with MA - hardware factor (System B).

243

System B: Adjust Hardware Factor (SMPs)
3.0

a, 2.0

g 1.5

e
C 1.0

0.5

0.0

■^
X

X
 EstmiatedTuiie(4 SMPs)

X
"Xw^ X Estunnted Tune (64 SMPs)

'••.^"Xs^^ X
•■..^-x.^ X

■••. ^*x,,»^ X '••. ^x^^x
•-.. ^*xO"

^■xjs^

'■'•.._ ""^**>«x^

 "*
"'*•'-.. ^^"^""•"•t«lfc..Jj™ „« ,^_

16
Number of ParUHoiis

(Mesh MB)

Figure 88. Multiple CPU/GPU performance with MB - hardware factor (System B).

r

1.2

1.0

o 0.8
X

•S 0.4

0 2

0.0

System B: Influence of SMP
\

X
X

X
X

X
X

X
X

 Estimated Time (4 SMPs)

 Actual Tmie (14 SMPs)

 Estimated Time (64 SMPs)
X

X
X

X
X

X
X

X
X

■*>*

'*-«-.„___

I 4 f

Number of Partitions
(Mesli lOFT)

i

Figure 89. Multiple CPU/GPU performance with lOFT - hardware factor (System B).

5.6.4 Contribution of Software Factors. This section establishes a relationship to
software factors and the resulting application performance via the derived equation (5.3),

244

adjusting hardware variables and then projecting against the actual performance of the
application. The resulting differentials are analyzed and the impact of the adjusted parameter(s)
on performance of the CPU/GPU computing system is theorized.

Thread occupancy is a common practice for increasing the performance of GPU-based
systems in the GPGPU computing cormnunity and this paradigm is followed to achieve
theoretical performance boost, altering the number of Threads-Per-Block (TPB). Increasing the
TPB value in equation (4.9.3) is carried through to equation (5.3) and allows higher probability
of coalesced memory accesses and utilizes more floating-point operational units - e.g. improved
theoretical performance. Once again, System A displays the clearest benefits for both input
meshes as shown in Figure 90 and Figure 91 - Figure 92 clearly illustrates the best performance
at 256 threads per block.

Lower the number of TPB to less than optimal for System A, defined as 256, provides
less opportunity for address coalescing as well as lower throughput whereas increasing the TPB
has the converse theoretical effect. Figure 93, Figure 94 and Figure 95 for System B display
similar effects on theoretical performance observed on System A excepting the sudden "dip"
encountered at 4 partitions for both input meshes.

The observed theoretical "dip" at 4 partitions for System B is an artifact of equation (4.7)

with the cost of the denominator v 5 . System B with input mesh MB shows a lowering of the
effects of both higher and lower TPB as the number of partitions increase due to the growing
influence of intra-nodal communication latency as well as increasing calls to the local CPU via
the PCIe bus for each node in the global system.

245

SvstemA: Influence of TPB
14.0

12.0

10.0

8.0

6.0

40

2.0

0.0

■■■■•■•■■-..........„

--- E.stimatedTmie(128TPB)

 Actual Time (2 56 TPB)

 Estimated Tune (512 TPB)

16
Number of Piii titious

(Mesh M\)

Figure 90. Multiple CPU/GPU performance with MA - software factor (System A).

System A: Influence of TPB

 Estunated Time i 12 8 TPB,)
100.0

"■••..^ Actual Time (256 TPB)

C so.o '*",. Estimated Time (512 TPB)
1—('•-.,

i 60 0 '■■■••....

a '"■•■

H -K^.O

20.0

0 0
16

Number of Partitions
(Meslj MB)

Figure 91. Multiple CPU/GPU performance with MB - software factor (System A).

246

System A: Influence of TPB

o
X 1.5

E
i ^-^
H

0.5

0.0

 Estimated Time (12 8 TPB)

 Actual Time (256 TPB)

 Estimated Time (512 TPB)

^_^ ''*•*♦ ***** ** ----■"""''

^^"""^^--l-.^ ̂ _I'

Number of Partitions
(Mesli lOFT)

Figure 92. Multiple CPU/GPU performance with lOFT - software factor (System A).

System B: Influence of TPB

"•-.. 0 9 EstimatedTime(12STPB)
0.8

'■••.. Actual Time (256 TPB)

4
't^ Estimated Time (512 TPB)

'^. 0.6

t 0.5

i 0,4

"^ - - ■-r"]^^]]'—~~~~——«
^ 0.3

0.2

0.1

0,0
16

Number of Partitions
(Mesh IMA)

Figure 93. Multiple CPU/GPU performance with MA - software factor (System B).

247

Svstem B: Influence of TPB
-^0

6,0

5.0

4.0

3,0

2.0

1,0

0,0

"■•••.._

~- Estimated Time (128 TPB)

 Actual Time (256 TPB)

 EstimatedTime (512TPB)

**"""" — "-TT""""—~'~~" ; ' j' *■•••»,

16

Number of Partitions
(Mesh MB)

Figure 94. Multiple CPU/GPU performance with MB - software factor (System B).

Svstem B: Influence of TPB
0,5

0,5

0,4

-0,4

0.3

0.3

0.2

0,2

0.1

0,1

0,0

X

 Estimated Tune (128 TPB)

 Actual Tmie (256 TPB)

 Estimated Time (512 TPB)

^^ *'•• "^
^^'^'^ '». X

"""'•"••,,,, ,^^ ^ ***

Number of Partitions
(MeshlOFT)

Figure 95. Multiple CPU/GPU performance with lOFT - software factor (System B).

The next section relates the observations of hardware and software factors to the final

performance results of the presented candidate application, reasoning the importance of careful

248

use for multiple CPU/GPU computing systems for optimal HPC modeling application
performance.

5.7 Performance and Relation to Software and Hardware Factors

The resulting performance of the multiple CPU/GPU computing system is directly tied to
the interplay of software and hardware factors of the environments in which they executed and
are related in this section - simply expanding hardware chips will not necessarily produce the
desired performance boost if the algorithm poorly incorporates the hardware and vice versa.
Point in fact, just loading a system with the largest possible number of threads (a software factor)
will overload the register file (a hardware factor) with resource demands enforcing less
utilization as well as register spilling to device memory and increasing the number of clock
cycles to hundreds. Increasing the number of computational chips via the increasing number of
SMPs (a hardware factor) will mean little if the access pattern of a matrix system defined by the
application (an algorithmic factor) is accessed by Kernel threads in a row-major order when the
GPU device is optimized for column-major causing non-contiguous addressing.

The single CPU/GPU systems from the previous chapter illustrate the overlap of software
and hardware artifacts on resulting performance and the multiple CPU/GPU systems in this
chapter show the same influence. However, this is not as easy to spot as the aggregate costs
imposed by intra-node communication can abrogate any performance benefits observed. And
determining the cost of this intra-node communication is difficult given its combination of the
local PCIe overhead of CPU/GPU communications.

The current state of the GPU is one of isolation fi-om the CPU as well as the MPI
standards - this is an area of current research and concern for future co-processor accelerators
[36, 96, 97, 112, 113]. Equation (5.3) takes liberties and employs approximation with regard to
the final cost of this communication between nodes and the local CPU-GPU costs as there is an
inherent double-copy when using MPI library calls for a set of one or more CPU/GPU systems
[105].

Establishing a direct and dynamic relation among all the defined software, hardware, and
algorithmic factors is necessary to elicit optimal performance boost for the presented candidate
application. This same judicious application of software and algorithmic methodologies are
needed for many other HPC computational modeling applications as the iterative solution to the
sparse matrix system defined by the presented candidate application is common to many

scientific and engineering applications [20, 21, 23, 39, 55, 80] that wish to fiiUy utilize the
substantial performance boosting capabilities of not only GPU accelerators but the inexorable
domination of multi-core CPUs [3, 4, 114].

249

CHAPTER 6
Summary and Future Directions

The major conclusions of this dissertation can be summarized as follows:

(i) The relationship of software and hardware factors on the performance of
computationally intense applications that wish to execute within the context of the
modem CPU/GPU computing systems must be judiciously applied for optimal
performance.

(ii) A predictive performance model was adapted for this research and is within the range
of acceptable normalized error for functionality. This model can be used to assist
with the proper determination of costljenefit optimal manipulation of software and
hardware factors.

(iii) Intra-nodal communication and local CPU/GPU host communication can be
deleterious to performance benefits for multiple CPU/GPU computing environments
and the asjmiptotic upper bound on this communicational cost was calculated as
asymptotically bound to cubic values with data locality.

(iv) The more regular an input matrix being solved by a CPU/GPU computing system,
single or multiple node, the more exposed software factors are to fmal performance
whereas the less regular a resulting matrix system, the greater the impact of
hardware.

Computing systems are fast approaching a time when the non-deterministic paradigm of
parallelism inherent in multi-cored architectures like the GPU will become common-place. High
Performance Computing applications wishing to harness this computational power optimally will
have to be adjusted as per three categories of factors - software, hardware, and algorithmic.
Computing system environments will continue to evolve but the basic understanding of these
performance factors will provide solid foundations upon which robust and efficient legacy and
new computational modeling applications can be developed.

Chapters 2 and 3 provided the underlying hardware architectural and software
algorithmic principles of two separate CPU/GPU computing systems defined in this work as
System A and System B. Algorithmic factor adjustments such as switching from a one thread

per row to one warp per row to solve the sparse matrix system^ = b engender an immediate

performance boost. The same statement can be made for software factor adjustments such as
data structure layout via the CSR to BCSR2x2, as the general improvement in locality mitigated
the lack of real memory cache inherent to GPU devices. System B illustrated a distinct hardware

250

architectural advantage over System A, providing more than 3-times processing cores as well as
4-times the number of registers and memory devices that executed on both sides of the clock
pulse - affecting a double-pumped graphics pipeline. These initial chapter results were reflected
for both the single and multiple CPU/GPU computing systems in chapters 4 and 5, with the
added complexity of MPl communication for the latter.

Chapter 4 also produced a computational complexity analysis of the CPU/GPU
computing system that was used to project the performance of the presented candidate
application within the context of both System A and System B machine environments.
Adjusting the software and hardware variables in the complexity equation reflected actual
performance results to within reasonable limits cohobating the interdependence of software and

hardware factors of the CPU/GPU computing architecture at a mathematical level. The
introduction of multiple CPU/GPU computing systems in chapter 5 fiirther advanced the concept
of these performance factors as the mathematical complexity was shown to be an exponential
factor of the number of SMPs per system utilized. Chapter 5 also exposed the cost of intra-
nodal and CPU-GPU local host communication as a correlation of the percentage of locally
defined non-zero elements held by a given GPU device registers and the factors off from the
calculated ideal parallelism via domain decomposition as multiple processors/nodes - found as a
negative factor on performance that is cubic in nature. The performance results determined with
the presented candidate application can be applied to other computationally intensive HPC
applications as well. Chapter 5 also revealed that the less regular input mesh defined by lOFT
the less effect locality plays with regards to data compression formats - due to smaller likelihood
of dense sub-matrices that are critical to blocked compression formats e.g., BCSR2x2.

The presented candidate application is designed around computational elements built up
using the FEM methodology, resulting in a sparse matrix system that is a well-documented point
of computational intensity [21, 48, 71, 79, 110, 112]. The solution of systems involving sparse
matrices is a common paradigm in the HPC modeling applications, all facing the same
computational dilemma - how to optimally solve these algorithms using modem computing
environments. Thus, the methodologies presented in this work can be applied to a wide range of
computationally intensive applications built around sparse matrix systems and their solution in
the computational modeling analysis.

The current popularity of the GPU as a computationally powerful co-processor will
continue to grow as demand for more powerful machines to execute HPC applications grows -
this will be exacerbated by the trend in mobile computing. The on-chip architectures of mobile
computing tables and smart phones have provided a new and interesting opportunity for GPGPU
computing - fiised addresses [115]. The PCIe CPU-GPU communication bottleneck is well
documented [21, 48, 71, 79, 110, 112] but a fusing of CPU and GPU on the same chip will likely

251

change this but will also create some new issues, e.g. memory device I/O. The fused systems,
such as AMD APC processor use the slower DDR memory device rather than GDDR of the GPU
resulting in the unusual situation of an efficient sparse matrix solution but with the opposite
effect on dense matrix systems [114, 115].

The inexorable growth in multi-cored CPUs will also provide more computationally
intensive power and a unique dynamic will develop as the GPU gets closer to the flexible
memory structure of the CPU, and vice versa such as processors hke Intel's Sandy Bridge [114].
The developer wishing to attain optimal performance with these new machines will need to
understand the intricacies of the software, hardware, and algorithmic factors as presented in this
work.

252

References

1 Boggan, S.K., and Pressel, D.M.: 'GPUs: An Emerging Platform for General-Purpose
Computation', in Editor (Ed.)^(Eds.): 'Book GPUs: An Emerging Platform for General-
Purpose Computation' (Army Research Lab, 2007, edn.), pp. 50

2 Fatahalian, K., and Houston, M.: 'GPUs: A Closer Look', ACM Queue, 2008, 6, (2), pp.
10

3 Ross, P.E.: 'Why CPU Frequency Stalled', IEEE Spectrum, 2008, 45, (4), pp. 1
4 Tian, D.Z.: 'Editorial (Moore's Law)', IEEE Potentials, 2008, 27, (6), pp. 3
5 Kang, S., Choi, H.J., Kim, C.H., Chung, S.W., Kwon, D., and Na, J.C: 'Exploration of

CPU/GPU co-execution: from the perspective of performance, energy, and temperature',
in Editor (Ed.)'^(Eds.): 'Book Exploration of CPU/GPU co-execution: from the
perspective of performance, energy, and temperature' (ACM New York, NY, USA 2011,
edn.), pp. 38-43

6 Hong, S., and Kim, H.: 'An integrated GPU power and performance model', in Editor
(Ed.)'^(Eds.): 'Book An integrated GPU power and performance model' (ACM New
York, NY, USA, 2010, edn.), pp. 280-289

7 Buck, I., Foley, T., Horn, D., Sugerman, J., Fatahalian, K., Houston, M., and Hamahan,
. P.: 'Brook for GPUs: Stream Computing on Graphics Hardware', ACM Transactions on

Graphics - Proceedings of ACM SIGGRAPH 2004 2004, 23, (3), pp. 777-786
8 Rumpf, M., and Strzodka, R.: 'Graphics Processor Units: New Prospects for Parallel

Computing', in Bruaset, A.M.a.T., Aslak (Ed.): 'Numerical Solution of Partial
Differential Equations on Parallel Computers' (Springer, 2005), pp. 89-134

9 Silberschatz, A., Galvin, P., and Gagne, G.: 'Applied Operating System Concepts:
windows XP update' (John Wiley & Sons, Inc., 2003, 1st edn. 2003)

10 Silberschatz, A., Galvin, P., and Gagne, G.: 'Applied Operating System Concepts' (John
Wiley & Sons, Inc., 2000, 1 edn. 2000)

11 Ross, P.E.: 'Why CPU Frequency Stalled', IEEE Spectrum, 2008, 45, (4), pp. 72-72
12 Patterson, D.: 'Computer Organization and Design : The Hardware/Software Interface'

(Elsevier Science Ltd, 1997. 1997)
13 Patterson, D.A., and Hennessy, J.L.: 'Computer Organization & Design: The

Hardware/Software Interface' (Morgan Kaufmann PubHshers, Inc., 1998, 2nd edn. 1998)
14 Liang, Y.: 'The Use of Parallel Polynomial Preconditioners in the Solution of Systems of

Linear Equations', University of Ulster, 2005
15 Cheng, H.: 'Vector Pipelining, Chaining, and Speed on the IBM 3090 and Cray X-MP',

Computer, 1989, 22, (9), pp. 9
16 Sivasubramaniam, A., Singla, A., Ramachandran, U., and Venkateswaran, H.: 'Machine

Abstractions and Locality Issues in Studying Parallel Systems', in Editor (Ed.)'^(Eds.):
'Book Machine Abstractions and Locality Issues in Studying Parallel Systems' (Georgia
Institute of Technology, 1993, edn.), pp.

253

17 Thomas, S.: 'Preconditioned Conjugate Gradient Methods for Semiconductor Device
Simulation on a CRAY C90 Vector Processor'. Proc. VECPAR '96 Selected papers from
the Second International Conference on Vector and Parallel Processing, 1997 1996 pp.
Pages

18 Thomas, S.: 'Preconditioned conjugate gradient methods for semiconductor device
simulation on a CRAY C90 vector processor', Vector and Parallel Processing —
VECPAR'96, 1997, 1215

19 Tagaya, S., Nishida, M., Hagiwara, T., Yanagawa, T., Yokoya, Y., Takahara, H., stadler,
J.O., and Galle, M.: 'The NEC SX-8 Vector Supercomputer System': 'High Performance
Computing on Vector Systems' (Springer-Verlag Berlin, Heidelberg, 2006), pp. Part-1,
3-24

20 Bustamam, A., Burrage, K., and Hamilton, N.A.: 'Fast Parallel Markov Clustering in
Bioinformatics Using Massively Parallel Computing on GPU with CUDA and
ELLPACK-R Sparse Format', IEEE/ACM Trans Comput Biol Bioinform., 2012, 3, (9),
pp. 13

21 Corrigan, A., Camelli, F.F., Lohner, R., and Wallin, J.: 'Running unstructured grid-based
CFD solvers on modem graphics hardware'. International Journal for Numerical Methods
in Fluids, 2011, 66, (2), pp. 221 -229

22 Grozea, C, Bankovic, Z., and Laskov, P.: 'FPGA vs. Multi-Core CPUs vs. CPUs:

Hands-on Experience with a Sorting Application': 'Facing the multicore-challenge '
(Springer-Verlag Berlin, Heidelberg 2010), pp. 105-117

23 Hamada, T., Narumi, T., Yasuoka, K., Nitadori, K., and Taiji, M.: '42 TFlops
Hierarchical N-body Simulations on GPUs with Applications in both Astrophysics and
Turbulence', in Editor (Ed.)'^(Eds.): 'Book 42 TFlops Hierarchical N-body Simulations
on GPUs with Applications in both Astrophysics and Turbulence' (ACM New York, NY,
USA, 2009, edn.), pp. 12

24 Luebke, D., and Humphreys, G.: 'How GPUs Work', IEEE Computer, 2007, 2007
25 Luebke, D.: 'CUDA: Scalable parallel programming for high-performance scientific

computing', in Editor (Ed.)'^(Eds.): 'Book CUDA: Scalable parallel programming for
high-performance scientific computing' (ACM New York, NY, USA 2008, edn.), pp. 836
-838

26 El-Ghazawi, T.A., Cantonnet, F., Yao, Y., Annareddy, S., and Mohamed, A.S.:
'Benchmarking parallel compilers: A UPC case study'. Future Generation Computer
Systems - Systems performance analysis and evaluation 2006, 22, (7), pp. 11

27 Poize, A., and Troger, P.: 'Trends and challenges in operating systems—from parallel
computing to cloud computing'. Concurrency and Computation: Practice & Experience,
2012, 24, (7), pp. 10

254

28 Wilkinson, B., and Allen, M.: 'Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers' (Pearson Education, Inc., 2005,
2nd edn. 2005)

29 Haney, R.H.: 'Study and Evaluation of Domain Decomposition Approaches in two
Parallel Software Code Developments for Process Flow Modeling in Liquid Composite
Molding', North Carolina A & T State University, 2006

30 Mohan, D.R., Shires, D., and Mark, A.: 'Scalable Large Scale Process Modeling and
Simulations in Liquid Composite Molding': 'Computational Science - ICCS 2001'
(Springer Berlin Heidelberg, 2001), pp. 1199-1208

31 Angel, E., and Shreiner, D.: 'An introduction to shader-based OpenGL programming', in
Editor (Ed.)'^(Eds.): 'Book An introduction to shader-based OpenGL programming'
(ACM, 2009, edn.), pp.

32 Udupa, A., Govindarajan, R., and Thazhuthaveetil, M.J.: 'Software Pipelined Execution
of Stream Programs on GPUs', in Editor (Ed.)^(Eds.): 'Book Software Pipelined
Execution of Stream Programs on GPUs' (IEEE Computer Society Washington, DC,
USA, 2009, edn.), pp. 200-209

33 Chen, J.X., and Wegman, E.J.: 'Foundations of 3D Graphics Programming: Using JOGL
and Java3D' (Springer-Verlag London Limited, 2006, 1 edn. 2006)

34 Heam, D., and Baker, P.M.: 'Computer Graphics C version - 2nd Edition' (Pearson
Education, 1997, 1996, 2nd edn. 1996)

35 http://www.opengl-tutorial.org, accessed 12-02-2012 2012
36 Leeser, M., Yablonski, D., Brooks, D., and King, L.S.: 'The Challenges of Writing

Portable, Correct and High Performance Libraries for CPUs', ACM SIGARCH
Computer Architecture News, 2011, 39, (4), pp. 5

37 Nvidia: 'CUDA C BEST PRACTICES GUIDE', in Editor (Ed.)^(Eds.): 'Book CUDA C
BEST PRACTICES GUIDE' (Nvidia Corporation, 2011, edn.), pp. 76

38 Nvidia: 'PARALLEL THREAD EXECUTION ISA VERSION 3.1', in Editor
(Ed.)^(Eds.): 'Book PARALLEL THREAD EXECUTION ISA VERSION 3.1' (Nvidia
Corporation, 2012, edn.), pp. 241

39 Ayanda, D., and Adejumo, Y.: 'A Prototype Model of High Performance Computing
Using Beowulf Cluster', International Journal of Emerging Sciences, 2011, 1, (4), pp.
696-705

40 Goddeke, D., Wobker, H., Strzodka, R., Mohd-Yusof, J., McCormick, P., and Turek, S.:
'Co-Processor Acceleration of an Urmiodified Parallel Solid Mechanics Code with
FeastGPU', International Journal of Computational Science and Engineering, 2009, 4,
(4), pp. 254-269

41 Lu, F., Song, J., Yin, F., and Zhu, X.: 'Performance evaluation of hybrid programming
patterns for large CPU/GPU heterogeneous clusters'. Computer Physics
Communications, 2011, 183, (6), pp. 1172-1181

255

42 Mohan, R., Ngo, N.D., Tamma, K.K., and Fickie, K.D.: 'Three-Dimensional Resin
Transfer Molding Process: Developments for Thick Composite Manufacturing
Applications', in Editor (Ed.)'^(Eds.): 'Book Three-Dimensional Resin Transfer Molding
Process: Developments for Thick Composite Manufacturing Applications' (U.S. Army
Research Laboratory, 1996, edn.), pp. 32

43 Mohan, R.V., Ngo, N.D., Tamma, K.K., and Fickie, K.D.: 'On a Pure Finite-Element-
Based Methodology for Resin Transfer Mold Filling Simulations', in Editor (Ed.)'^(Eds.):
'Book On a Pure Finite-Element-Based Methodology for Resin Transfer Mold Filling
Simulations' (Army Research Lab, 1996, edn.), pp. 18

44 Chandmpatla, T.R., and Belegundu, A.D.: 'Introduction To Finite Elements In
Engineering' (Prentice-Hall, hic, 2002, 3 edn. 2002)

45 Rao, S.S.: 'Applied Numerical Methods For Engineers And Scientists' (Prentice-Hall,
Inc., 2002, 1st edn. 2002)

46 Shewchuk, J.R.: 'An Introduction to the Conjugate Gradient Method Without the
Agonizing Pain', in Editor (Ed.)'^(Eds.): 'Book An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain' (Carnegie Mellon University, 1994, edn.),
pp. 64

47 Mohan, D.R., Ngo, N.D., and Tamma, K.K.: 'On a pure fmite-element-based
methodology for resin transfer molds filling simulations', Polymer Engineering &
Science, 1999, 39, (1), pp. 26-43

48 Baskaran, M.M., and Bordawekar, R.: 'Optimizing Sparse Matrix-Vector Multiplication
on GPUs', in Editor (Ed.)'^(Eds.): 'Book Optimizing Sparse Matrix-Vector Multiplication
on GPUs' (IBM Research, 2008, edn.), pp. 11

49 Bell, N., and Garland, M.: 'Effcient Sparse Matrix-Vector Multiplication on CUDA', in
Editor (Ed.)'^(Eds.): 'Book Effcient Sparse Matrix-Vector Multiplication on CUDA'
(NVIDIA Corporation, 2008, edn.), pp. 32

50 Buatois, L., Caumon, G., and Levy, B.: 'Concurrent number cruncher: a GPU
implementation of a general sparse linear solver', International Journal of Parallel,
Emergent and Distributed Systems, 2009, 24, (3), pp. 18

51 Helfenstein, R., and Koko, J.: 'Parallel preconditioned conjugate gradient algorithm on
GPU', Journal of Computational and Applied Mathematics, 2011, 236, (15), pp. 6

52 Shahnaz, R., Usman, A., and Chughtai, I.R.: 'Review of Storage Techniques for Sparse
Matrices', in Editor (Ed.)^(Eds.): 'Book Review of Storage Techniques for Sparse
Matrices' (IEEE, 2005, edn.), pp. 1-7

53 Hugues, M.R., and Petiton, S.G.: 'Sparse Matrix Formats Evaluation and Optimization on
a GPU', in Editor (Ed.)'^(Eds.): 'Book Sparse Matrix Formats Evaluation and
Optimization on a GPU' (IEEE Computer Society Washington, DC, USA, 2010, edn.),
pp. 122-129

256

54 Rehman, M.S.: 'Exploring Irregular Memory Access Applications on the GPU',
International Institute of Information Technology, 2010

55 De Jong, M.A.: 'Developing a CUDA solver for large sparse matrices for MARIN'.
Master thesis, Delft University of Technology, 2012

56 Corporation, A.: 'AMD Family lOh Server and Workstation Processor Power and
Thermal Data Sheet', in Editor (Ed.)^(Eds.): 'Book AMD Family lOh Server and
Workstation Processor Power and Thermal Data Sheet' (2010, edn.), pp. 98

57 Corporation, I.: 'Intel® Xeon® Processor 5600 Series: The Next Generation of
Intelligent Server Processors', in Editor (Ed.)^(Eds.): 'Book Intel® Xeon® Processor
5600 Series: The Next Generation of Intelligent Server Processors' (Intel Corporation,
2010, edn.), pp. 8

58 Corporation, N.: 'NVIDIA Quadro® FX 5600 Datasheet', in Editor (Ed.)^(Eds.): 'Book
NVIDIA Quadro® FX 5600 Datasheet' (2008, edn.), pp. 2

59 Corporation, N.: 'TESLA M2050 AND TESLA M2070/M2070Q DUAL-SLOT
COMPUTING PROCESSOR MODULES', in Editor (Ed.)'^(Eds.): 'Book TESLA
M2050 AND TESLA M2070/M2070Q DUAL-SLOT COMPUTING PROCESSOR
MODULES' (Nvidia Corporation, 2010, edn.), pp. 18

60 Nvidia: 'NVIDIA GeForce 8800 Architecture Technical Brief, in Editor (Ed.)^(Eds.):
'Book NVIDIA GeForce 8800 Architecture Technical Brief (Nvidia Corporation, 2006,
edn.), pp. 55

61 Nvidia: 'NVIDIA's Next Generation CUDA Compute Architecture: Fermi - Whitepaper',
in Editor (Ed.)'^(Eds.): 'Book NVIDIA's Next Generation CUDA Compute Architecture:
Fermi - Whitepaper' (NVIDIA Corporation, 2009, edn.), pp. 22

62 Nvidia: 'NVIDIA CUDA C Programming Guide: Version 4.2', in Editor (Ed.)'^(Eds.):
'Book NVIDIA CUDA C Programmmg Guide: Version 4.2' (Nvidia Corporation, 2012,
edn.), pp. 173

63 Komatitsch, D., Michea, D., and Erlebacher, G.: 'Porting a high-order finite-element
earthquake modeling application to NVIDIA graphics cards using CUDA', Journal of
Parallel Computing, 2009, 69, (5), pp. 9

64 Kuznik, F., Obrecht, C, Rusaouen, G., and Roux, J.-J.: 'LBM based flow simulation
using GPU computing processor'. Computers & Mathematics with Applications, 2010,
59, (7), pp. 12

65 Garland, M., Le Grand, S., NickoUs, J., Anderson, J., Hardwick, J., Morton, S., Phillips,
E., Zhang, Y., and Volkov, V.: 'Parallel Computing Experiences with CUDA ', Micro,
IEEE 2008, 28, (4), pp. 13-27

66 Parakh, A.: 'Performance estimation and application mapping on different CPUs'. Proc.
HiPC - High Performance Computing Confrence, Pune, INDIA, December 18-21, 2012
2012 pp. Pages

257

67 Bemaschi, M., Bisson, M., and Rossetti, D.: 'Benchmarking of communication
techniques for CPUs', Journal of Parallel and Distributed Computing, 2013, 73, (2), pp. 5

68 Micikevicius, P.: '3D Finite Difference Computation on CPUs using CUDA', in Editor
(Ed.)^(Eds.): 'Book 3D Finite Difference Computation on CPUs using CUDA' (ACM
New York, NY, USA, 2009, edn.), pp.

69 Papadrakakis, M., Stavroulakis, G., and Karatarakis, A.: 'A new era in scientific
computing: Domain decomposition methods in hybrid CPU-GPU architectures'.
Computer Methods in Applied Mechanics and Engineering, 2011, 200, (13-16), pp. 1490-
1508

70 Di, P., Wu, H., Xue, J., Wang, F., and Yang, C: 'Parallelizing SOR for GPGPUs using
alternate loop tiling'. Journal of Parallel Computing, 2012, 38, (6-7), pp. 18

71 Goddeke, D., Strzodka, R., and Turek, S.: 'Performance and accuracy of hardware-
oriented native-, emulated- and mixed-precision solvers in FEM simulations',
International Journal of Parallel, Emergent and Distributed Systems 2007, 22, (4), pp.
221-256

72 Kothapalli, K., Mukherjee, R., Rehman, M.S., Patidar, S., Narayanan, P.J., and Srinathan,
K.: 'A Performance Prediction Model for the CUDA GPGPU Platform', in Editor
(Ed.)^(Eds.): 'Book A Performance Prediction Model for the CUDA GPGPU Platform'
(IEEE, 2009, edn.), pp. 463 - 472

73 Lukash, M., and Rupp, K.: 'Sparse Approximate Inverse Preconditioners for Iterative
Solvers on CPUs', in Editor (Ed.)'^(Eds.): 'Book Sparse Approximate Inverse
Preconditioners for Iterative Solvers on CPUs' (Society for Computer Simulation
International 2012, edn.), pp.

74 Huo, X., Ravi, V., Ma, W., and Agrawal, G.: 'An Execution Strategy and Optimized
Runtime Support for Parallelizing Irregular Reductions on Modem CPUs', in Editor
(Ed.)^(Eds.): 'Book An Execution Strategy and Optimized Runtime Support for
Parallelizing Irregular Reductions on Modem CPUs' (ACM New York, NY, USA, 2011,
edn.), pp. 2-11

75 Wald, I.: 'Active thread compaction for GPU path tracing', in Editor (Ed.)'^(Eds.): 'Book
Active thread compaction for GPU path tracing' (ACM New York, NY, USA, 2011,
edn.), pp. 51-58

76 Hewlett-Packard Development Company, L.P.: 'QuickSpecs NVIDIA Quadro FX 5600
PCIe Graphics Card', in Editor (Ed.)''(Eds.): 'Book QuickSpecs NVIDIA Quadro FX
5600 PCIe Graphics Card' (2009, edn.), pp. 4

77 Gou, C, and Gaydadjiev, G.N.: 'Elastic Pipeline: Addressing GPU On-chip Shared
Memory Bank Conflicts', in Editor (Ed.)^(Eds.): 'Book Elastic Pipeline: Addressing
GPU On-chip Shared Memory Bank Conflicts' (ACM New York, NY, USA, 2011, edn.),
pp.

258

78 Nvidia: 'CUDA CUBLAS Library: Version 1.1', in Editor (Ed.)''(Eds.): 'Book CUDA
CUBLAS Library: Version 1.1' (Nvidia Corporation, 2007, edn.), pp. 84

79 Corporation, N.: 'CUDA CUSPARSE Users Guide', in Editor (Ed.)^(Eds.): 'Book
CUDA CUSPARSE Users Guide' (Nvidia Corporation, 2012, v5.0 edn.), pp. 123

80 Bahi, J.M., Couturier, R., and Khodja, L.Z.: 'Parallel GMRES implementation for
solving sparse linear systems on GPU clusters', in Editor (Ed.)'^(Eds.): 'Book Parallel
GMRES implementation for solving sparse linear systems on GPU clusters' (Society for
Computer Simulation international San Diego, CA, USA, 2011, edn.), pp. 12-19

81 Kruger, J., and Westermann, R.: 'Linear Algebra Operators for GPU Implementation of
Numerical Algorithms', ACM Transactions on Graphics (TOG) - Proceedings of ACM
SIGGRAPH 2003, 2003, 22, (3), pp. 8

82 Hoik, E., Byrd, W., Mahajan, N., Wilcock, J., Chauhan, A., and Lumsdaine, A.:
'Declarative Parallel Programming for CPUs': 'Advances in Parallel Computing, Volume
22: Applications, Tools and Techniques on the Road to Exascale Computing' (lOS
Press, 2011)

83 Kahan, W.: 'IEEE Standard 754 for Binary Floating-Point Arithmetic', in Editor
(Ed.)'^(Eds.): 'Book IEEE Standard 754 for Binary Floating-Point Arithmetic'
(University of California Berkeley CA, USA, 1997, edn.), pp. 30

84 Dimitrov, M., Mantor, M., and Zhou, H.: 'Understanding Software Approaches for
GPGPU Reliability', in Editor (Ed.)'^(Eds.): 'Book Understanding Software Approaches
for GPGPU Reliability' (ACM New York, NY, USA, 2009, edn.), pp. 94-104

85 Hillesland, K., and Lastra, A.: 'GPU floating-point paranoia'. Proc. ACM Workshop on
General Purpose Computing on Graphics Processors In ACM Workshop on General
Purpose Computing on Graphics Processors 2004 2004 pp. Pages

86 Whitehead, N., and Fit-Florea, A.: 'Precision & Performance: Floating Point and IEEE
754 CompUance for NVIDIA CPUs', in Editor (Ed.)^(Eds.): 'Book Precision &
Performance: Floating Point and IEEE 754 Compliance for NVIDIA GPUs' (Nvidia,
2011, edn.), pp. 7

87 Castaldo, A.M.: 'ERROR ANALYSIS OF VARIOUS FORMS OF FLOATE^G POESfT
DOT PRODUCTS', The University of Texas at San Antonio, 2007

88 Volkov, v., and Demmel, J.W.: 'Benchmarking GPUs to tune dense linear algebra'. Proc.
International Conference for High Performance Computing, Networking, Storage and
Analysis, 2008. SC 2008., Austin, TX, USA, 15-21 Nov. 2008 2008 pp. Pages

89 Mohan, R.V., Ngo, N.D., and Tamma, K.K.: 'On a Pure Finite Element Methodology for
Resin Transfer Mold Filling Simulations', Polymer Engineering and Science, 1999, 39,
pp. 26-43

90 Fatahalian, K., Sugerman, J., and Hamahan, P.: 'Understanding the Effciency of GPU
Algorithms for Matrix-Matrix Multiplication', in Editor (Ed.)'^(Eds.): 'Book

259

Understanding the Effciency of GPU Algorithms for Matrix-Matrix MuUipUcation'
(ACM New York, NY, USA 2004, edn.), pp. 133-137

91 Cormen, T.H., Leiserson, C.E., Rivest, R.L., and Stein, C: 'Introduction To Algorithms'
(The MIT Press, 2001, 2nd edn. 2001)

92 Resios, A.: 'GPU performance prediction using parametrized models'. Masters, Utrecht
University, 2011

93 Zhang, Y., and Owens, J.D.: 'A quantitative performance analysis model for GPU
architectures'. Proc. High Performance Computer Architecture (HPCA), 2011 IEEE 17th
International Symposium on San Antonio, TX, 12-16 Feb. 2011 2011 pp. Pages

94 Wang, H., Potluri, S., Luc, M., Singh, A.K., Sur, S., and Panda, D.K.: 'MVAPICH2-
GPU: optimized GPU to GPU communication for InfiniBand clusters'. Computer
Science - Research and Development, 2011, 26, (3-4), pp. 257-266

95 Karunadasa, N.P., and Ranasinghe, D.N.: 'Accelerating High Performance Applications
with CUDA and MPI'. Proc. 2009 International Conference on Industrial and
Information Systems (ICIIS), Sri Lanka, December 28-31, 2009 2009 pp. Pages

96 Tipparaju, V., and Vetter, J.S.: 'GA-GPU: Extending a Library-based Global Address
Space Programming Model for Scalable Heterogeneous Computing Systems', in Editor
(Ed.)'^(Eds.): 'Book GA-GPU: Extending a Library-based Global Address Space
Programming Model for Scalable Heterogeneous Computing Systems' (ACM New York,
NY, USA 2012, edn.), pp. 53-64

97 Wang, L., Huang, M., Narayana, V., and El-Ghazawi, T.A.: 'Scaling Scientific
Apphcations on Clusters of Hybrid Multicore/GPU Nodes', in Editor (Ed.)'^(Eds.): 'Book
Scaling Scientific Applications on Clusters of Hybrid Multicore/GPU Nodes' (ACM New
York, NY, USA, 2011, edn.), pp.

98 Wilkinson, B., and Allen, M.: 'Parallel Programming: Techniques and Applications
Using Networked Workstations and Parallel Computers' (Pearson Prentice Hall, 2005, 2
edn. 2005)

99 Sun Microsystems, I.: 'Sun HPC ClusterTools 8.2 (software tools)', in Editor
(Ed.)^(Eds.): 'Book Sun HPC ClusterTools 8.2 (software tools)' (Oracle, hic, 2009,
edn.), pp.

100 Geist, G.A., Kohl, J.A., and Papadopoulos, P.M.: 'PVM and MPI: A comparison of
features', Calculateurs Paralleles, 1996, 8, (2)

101 Song, J.P., and Shires, D.: 'Central Processing Unit/Graphics Processing Unit
(CPU/GPU) Hybrid Computing of Synthetic Aperture Radar Algorithm', in Editor
(Ed.)'*^(Eds.): 'Book Central Processing Unit/Graphics Processing Unit (CPU/GPU)
Hybrid Computing of Synthetic Aperture Radar Algorithm' (U.S. Army Research
Laboratory, 2010, edn.), pp.

260

102 Khajeh-Saeed, A., and Perot, J.B.: 'Computational Fluid Dynamics Simulations Using
Many Graphics Processors', Computing in Science & Engineering, 2011, 14, (3), pp. 10-
19

103 Komatitsch, D., Michea, D., and Erlebacher, G.: 'Porting a high-order finite-element
earthquake modeling application to NVIDIA graphics cards using CUDA', Journal of
Parallel and Distributed Computing, 2009, 69, (5), pp. 451-460

104 Fengshun, L., Song, J., Yin, F., and Zhu, X.: 'Performance evaluation of hybrid
programming patterns for large CPU/GPU heterogeneous clusters'. Computer Physics
Communications, 2012, 183, (6), pp. 1172-1181

105 Ji, F., Ajiy, A.M., Dinanz, J., Buntinasz, D., Balajiz, P., Fengy, W.-c, and Ma, X.:
'Efficient Intranode Communication in GPU-Accelerated Systems'. Proc. Parallel and
Distributed Processing Symposium Workshops & PhD Forum (IPDPSW), 2012 IEEE
26th hitemaUonal Shanghai 21-25 May 2012 2012 pp. Pages

106 BelviranU, M.E., Bhuyan, L.N., and Gupta, R.: 'A Dynamic Self-Scheduling Scheme for
Heterogeneous Multiprocessor Architectures', ACM Transactions on Architecture and
Code Optimization (TACO) - Special Issue on High-Performance Embedded
Architectures and Compilers, 2013, 9, (4), pp. 19

107 Filipovic, J., Peterlik, I., and Fousek, J.: 'GPU Acceleration of Equations Assembly in
Finite Elements Method - Preliminary Results', SAAHPC: Symposium on Application
Accelerators in HPC, 2009

108 Fousek, J., Filipovic, J., and Madzin, M.: 'Automatic Fusions of CUDA-GPU Kernels for
Parallel Map', ACM SIGARCH Computer Architecture News, 2011, 39, (4), pp. 1

109 Khajeh-Saeed, A., and Perot, J.B.: 'Computational Fluid Dynamics Simulations Using
Many Graphics Processors', Computing in Science & Engineering, 2012, 14, (3), pp. 9

110 Goddeke, D., Strzodka, R., Mohd-Yusof, J., McCormick, P., Buijssen, S.H.M.,
Grajewski, M., and Turek, S.: 'Exploring weak scalability for FEM calculations on a
GPU-enhanced cluster'. Journal of Parallel Computing, 2007, 33, (10-11), pp. 685-699

111 Samuels, M.L., and Witmer, J.A.: 'Statistics for the Life Sciences' (Pearson Education,
Inc., 2003, 3 edn. 2003)

112 Che, S., Sheaffer, J.W., and Skadron, K.: 'Dymaxion: Optimizing Memory Access
Patterns for Heterogeneous Systems', in Editor (Ed.)'^(Eds.): 'Book Dymaxion:
Optimizing Memory Access Patterns for Heterogeneous Systems' (ACM New York, NY,
USA, 2011, edn.), pp.

113 Steinberger, M., Kainz, B., Kerbl, B., Hauswiesner, S., Kenzel, M., and Schmalstieg, D.:
'Softshell: Dynamic Scheduling on CPUs', ACM Transactions on Graphics (TOG) -
Proceedings of ACM SIGGRAPH Asia 2012, 2012, 31, (6), pp. 12

114 Solutions, A.E.: 'Intel Sandy Bridge Brings Many Benefits the PC/104 Form Factor', in
Editor (Ed.)'^(Eds.): 'Book hitel Sandy Bridge Brings Many Benefits the PC/104 Form
Factor' (Embedded Solutions, 2011, edn.), pp. 5

261

115 Spafford, K.L., Meredith, J.S., Lee, S., Li, D., Roth, P.C, and Vetter, J.S.: 'The Tradeoffs
of Fused Memory Hierarchies in Heterogeneous Computing Architectures', in Editor
(Ed.)^(Eds.): 'Book The Tradeoffs of Fused Memory Hierarchies in Heterogeneous
Computing Architectures' (ACM New York, NY, USA, 2012, edn.), pp. 103-112

262

Appendix A

The CUDA Kernel code and associated functions and structures for the execution of
sparse matrix-vector multiplication discussed in chapter 3 are presented below.

CUDA File (matvec.cu):

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <cuda.h>
#include <cublas.h>

#defme BLOCKSIZE 16

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form
// Ax = b' using CRS compression.
extern "C" void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp,

unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b,
float *x, unsigned int m, unsigned int n, unsigned int p, float &time);

// HOST-Side C-Code interface for generalized matrix multiplication operation of the form
// 'Ax = b' using BCRS 2x2 compression.
extern "C" void mul_multBlocks_BCRS(float *val, imsigned int vLength, unsigned int *rp,

unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b,
float *x, unsigned int m, unsigned int n, unsigned int p, float &time);

// GPU-Code for generalized matrix multiplication operation of the form Ax = b' for CSR
// format.

 global void mul_multipleblocks_CRS(float *val, float *b, float *x, uint2 *rp,
unsigned int *cp, unsigned int m, unsigned int n);

// GPU-Code for generalized matrix multiplication operation of the form 'Ax = b' for BCRS 2x2
// format.

 global void mul_multipleblocks_BCRS(float4 *val, float2 *b, float2 *x, uint2 *rp,
unsigned int *cp, unsigned int m, unsigned kit n);

// Computes the current THREAD index.
 device unsigned int compute_thread_index() {

return (blockIdx.x*BLOCK_SIZE*BLOCK_SIZE

263

+ blockIdx.y*BLOCK_SIZE*BLOCK_SIZE*gridDim.x
+ threadldx.x + threadIdx.y*BLOCK_SIZE);

}

void mul_multBlocks_CRS(float *val, unsigned int vLength, unsigned int *rp,
unsigned int rpLength, unsigned int *cp, unsigned int cpLength,float *b, float *x,
unsigned int m, unsigned int n, unsigned int p, float &time) {

// Timing this operation.
cudaEvent_t start, stop; time = O.Of;

// Initialize EVENT Timers - CUDA.
cudaEventCreate(&start); cudaEventCreate(&stop);

// Variables to be placed on GPU.
float *val_d = NULL; float *b_d = NULL;
float *x_d = NULL; uint2 *rp_d = NULL;
unsigned int *cp_d = NULL;

// Compute ROW "pointer" BOUNDS to be pushed on the GPU
uint2 *cpu_rp = new uint2[rpLength - 1];

{
for(unsigned int i = 0; i < rpLength - 1; i++)

{
cpu_rp[i].x = rp[i];
cpu_rp[i].y = rp[i + l];

}
}

// Allocate and initialize values for GPU
cudaMalloc((void**)&val_d, vLength*sizeof(float));
cudaMalloc((void**)&x_d, m*p*sizeof(float));
cudaMalloc((void**)&b_d, n*p*sizeof(float));
cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int));
cudaMalloc((void**)&rp_d, rpLength* sizeof(uint2));

cudaMemcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice);
cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice);
cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice);

264

}

// Calculate dimensions for GPU Device
dim3 grid; dim3 block;

grid.x = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1);
grid.y = (unsigned int)(sqrt((float)n)/BLOCK_SIZE + 1);
block.x = BLOCK_SIZE; block.y = BLOCKSIZE;

cudaEventRecord(start, 0);

// Kernel call
mul_multipleblocks_CRS«<grid, block»>(val_d, b_d, x_d, rp_d, cp_d, m, n);

// "Record" the stopping of this EVENT - i.e. return from kernel call.
cudaEventRecord(stop, 0); cudaEventSynchronize(stop);

// Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA timer
// objects.
cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

// Retrieve results pointed by 'x_d'
cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost);

//Free Memory - CPU.
delete [] cpurp;

// Free Memory - GPU.
cudaFree(val_d);
cudaFree(b_d);
cudaFree(x_d); .
cudaFree(rp_d);
cudaFree(cp_d);

void mul_multBlocks_BCRS(float *val, unsigned int vLength, unsigned int *rp,
unsigned int rpLength, unsigned int *cp, unsigned int cpLength, float *b, float *x,
unsigned int m, unsigned int n, unsigned int p, float &time) {

// Timing this operation.

265

cudaEvent_t start, stop; time = O.Of;

//Initialize EVENT Timers - CUDA.
cudaEventCreate(&start); cudaEventCreate(&stop);

// Variables to be placed on GPU.

float4 *val_d = NULL; float2 *x_d = NULL;
float2 *b_d = NULL; uint2 *rp_d = NULL;
unsigned int *cp_d = NULL;

// Compute ROW "pointer" BOUNDS to be pushed on the GPU.
uint2 *cpu_rp = new uint2[rpLength - 1];

{
for(unsigned int i = 0; i < rpLength - 1; i++)

{
cpu_rp[i].x = rp[i];
cpu_rp[i].y = rp[i+l];

}
}

// Allocate and initialize values for GPU.
cudaMalloc((void**)&val_d, vLength*sizeof(float4));
cudaMalloc((void**)&x_d, m*p*sizeof(float2));
cudaMalloc((void**)&b_d, n*p*sizeof(float2));
cudaMalloc((void**)&cp_d, cpLength*sizeof(unsigned int));
cudaMalloc((void**)&rp_d, rpLength*sizeof(uint2));

cudalV[emcpy(cp_d, cp, cpLength*sizeof(unsigned int), cudaMemcpyHostToDevice);
cudaMemcpy(rp_d, cpu_rp, rpLength*sizeof(uint2), cudaMemcpyHostToDevice);
cudaMemcpy(val_d, val, vLength*sizeof(float), cudaMemcpyHostToDevice);
cudaMemcpy(b_d, b, n*p*sizeof(float), cudaMemcpyHostToDevice);

// Calculate dimensions for GPU device.
dim3 grid; dim3 block;
grid.x = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1);
grid.y = (unsigned int)(sqrt((float)n/2.0f)/BLOCK_SIZE + 1);
blockx = BLOCKSIZE; block.y = BLOCKSIZE;

cudaEventRecord(start, 0);

266

// Kernel call.

mul_multiplebIocks_BCRS«<grid, block»>(val_d, b_d, x_d, rp_d, cp_d, m, n);

// "Record" the stopping of this EVENT - i.e. return from kernel call.

cudaEventRecord(stop, 0); cudaEventSynchronize(stop);

// Get the amount of time elapsed (in milliseconds) and DESTROY the CUDA
// timer objects.
cudaEventElapsedTime(&time, start, stop); cudaEventDestroy(start);,
cudaEventDestroy(stop);

// Retrieve results pointed by 'x_d'
cudaMemcpy(x, x_d, m*p*sizeof(float), cudaMemcpyDeviceToHost);

// Free Memory - CPU.
delete [] cpu_rp;
// Free Memory - GPU.

cudaFree(val_d);
cudaFree(b_d);
cudaFree(x_d);
cudaFree(rp_d);
cudaFree(cp_d); .

C/C++ Matrix Class

template <class T> class Matrix {
private:

T *data_;

// Number of Rows and Cols,
unsigned int m_; unsigned int n_;

// Matrix Compression Format.
FORMAT_TYPE type_;

// I-Index (e.g. ROW "pointer" in CRS).
unsigned int *rowptr_;

267

//J-Index (e.g. COLUMN "pointer" in CRS).
unsigned int *colind_;

// First Index into Sub-Block for BCRS (i.e. 2x2 sub-blocks) Format,
unsigned int *nzptr_;

// Non-Zero(s) from ORIGINAL matrix for CRS (i.e. 1x1 Sub-Blocks).
T *val_;

// The LENGTH of'val', 'colind_', 'rowptrj, and 'nzptr' Vectors respectively,
unsigned int vLength_; unsigned int cLength_; unsigned int rLength_;

// Compute the total number of Non-Zeros in this matrix,
unsigned int numNNZ();

// Compress current matrix to CRS Format.(i.e. 1x1 Block.)
void compressCRSO;

// Compress current matrix to BCRS Format.(i.e. 2x2 Block.)
void compressBCRSO;

// CPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and
// NO Compression.
void matVecMultCRS(T *b, T *x, unsigned int n);
void matVecMultBCRS(T *b, T *x, unsigned int n);
void matVecMultNONE(T *b, T *x, unsigned int n);
void matMatMult_NONE(T *b, T *x);

// GPU-Based Matrix-Vector Multiplication(s) using CRS, BCRS (2x2), and
// NO Compression.
void matVecMultCRS_GPU(T *b, T *x, unsigned int p);
void matVecMultBCRS_GPU(T *b, T *x, unsigned int p);
void matVecMultNONE_GPU(T *b, T *x, unsigned int p);

public:

// Create Matrix object from argument data of m-by-n dimensions.
Matrix(T **data, unsigned int m, unsigned int n);

268

};

// Create Matrix object from argument data of m-by-m dimensions.
Matrix(T *data, unsigned int m);

// Compress current data element (i.e. matrix), REMOVING the ORIGINAL
// Matrix elements.

// PARAM: type The Matrix Compression used (e.g. CRS).
void compress(FORMAT_TYPE type = CRS);

// Computes Matrix-Vector Product as defined by the current matrix compression
// format (if any).
//PARAM: b Right-Hand Side
// PARAM: X Solution Vector (holds solution)
//PARAM: n Lengthof Right-Hand Side Vector and Solution Vector
void matrixVectorMult(T *b, T *x, unsigned int n);
void matrixMultCPU(T *b, T *x);

// Computes Matrix-Vector Product as defined by the current matrix compression
// format (if any) for the
// GPU Device.
//PARAM: b Right-Hand Side
// PARAM: X Solution Vector (holds solution)
void matrixVectorMultGPU(T *b, T *x, unsigned int p);
void matrixMultGPU(T *B, T *C);

T& operator()(unsigned int i, unsigned int j);
void printCompressTypeO;

~Matrix();

269

C/C++ Class Template (calls CUDA file with Kernels)

template <class T>

void Matrix<T>::matVecMultCRS_GPU(T *b, T *x, unsigned int p) {
if(val_ == NULL || rowptr_ == NULL || colind_ == NULL)

throw MatrixException("Exception with GPU call!\n");

float gTime = O.Of;

// Call kernel via C-Code interface.
mul_multBlocks_CRS(val_, vLength_, rowptr_, rLength_, colind_, cLength_, b, x, m_,

n_, p, gTime);

cout« "GPU Execution Time: " « gTime « " (milliseconds).\n";

Derivations of Presented Equations:

Equation (4.5) to calculate the average number of non-zeros per row when using the
Compressed Sparse Row (CSR) data compression format is detailed below.

The data-type utilized in this work is the single-precision float each of which is defined by 4-
bytes. The assumption is an initial square matrix of M x M dimension so the number of non-zero
elements for each row M is generated as a ratio subtracted from the GPU device global

memory G,„^„. The numerator of the ratio is 4 times the number of rows M plus 1, to account for

even numbers of elements as well as 4-byte floats. The denominator is the number of rows
M times 8 which defines the square of a single float - generating a ratio that is less than 1 and an
average of length of a single row in the original matrix. The maximum of 1 or the generated

average number of non-zeros per row is chosen as the result i?^^ since the value should at least

be a placeholder for any equation that employees this computed value.

Equation (4,6) to calculate the number of blocks when using the Compressed Sparse
Row (CSR) data compression format is detailed below.

Each calculated block of data input to the GPU, A^^, is partitioned such that a single warp

(32 threads) is given for each row M . The number of blocks is a ratio such that the numerator is

270

the product of the number of rows M and the average number of non-zero elements per row

R,^2 ^iid the denominator is the total number of warps and SMPs for the GPU device multiplied

by the number of threads per warp, 32.

Ns ^ ,, ,, 'I (4.6)

Equation (5.3) to calculate the total solution time for multiple CPU/GPU computing
systems when using Compressed Sparse Row (CSR) data compression format is detailed below.

The estimated solution time for the multiple CPU/GPU computing system is adapted from the
estimated time for the single CPU/GPU computing system which is detailed in equation (4.9.3)

of chapter 4 given as r^^„, and the cost of local CPU-GPU host and intra-nodal MPI

communication defined as C.

The assumption is made that the single CPU/GPU computing system solution time

estimation 7^^„ and the number of active thread blocks per SMP jV^^^are already known. The

naive approach of computing the ratio of the single CPU/GPU solution time by the number of

partitions P^^ must be modified to account for overhead of communications defined as C. Given

each partition will produce an individual costC, C is divided by the number of partitions of the

original global domain P^^ - this result is multiplied by the sum of the number of active thread

blocks per SMP N^^.^ and the square root of the number of partitions P^^ represented in equation

(5.3) as \N^j.g +-yJP,j)■ Multiplying [N^j-j^ +4^j by the communication ratio generates

an average cost of communication assuming a square matrix, thus the -^JP^j variable.

The estimated solution time of multiple CPU/GPU computing system is not complete
until the rate of growth/decay is calculated using an exponent of the ratio of the total number of

partitions to the number of active thread blocks represented in equation (5.3) ase^™ . Using the

generated rate of growth/decay e'^'"', the cost of communication will increase as the number of
partitions increase and conversely will decrease as the number of active thread blocks increase.

T
T = gP"

/null gpu £j

Ad
[NATB+4P^)

Ps,l

e"™ , (5.3)

271

Appendix B

The CUDA Kernels and C/C++ code for the execution of Ml candidate application
discussed in chapters 4 and 5 are presented below.

Main-point-of-entry (fertm2d.cpp):

// Name : fertm2d.cpp
// Author : Richard Haney
// Version : 1.1a

// Description : Simulated Resin Transfer Molding (RTM) such that the global solution is solved
// using Finite Element Method (FEM) and is based on original FORTRAN
// COMPOSE2D code by Dr. Ram Mohan and Dale Shires.
#include <stdio.h>
#include <stdlib.h>
#include <iostream>
#include "Fertm.h"
using namespace std;

int main(int argc, char **argv) {
Fertm fertm_(argc, argv);
uitnfill = 0; double sumf= 0.0;

long long int flops = 0; double soltime = 0.0;

// initialize system
fertm_. initialize();

// preprocess
fertm_.preprocess(nfill);

// process/solve system
fertm_.process(nfill, sumf, flops, soltime);

return EXITSUCCESS;

272

Interface and implementation of parent RTM object (IRTM.h):

#ifiidefIRTM_H_
#defme IRTM_H_

#include <string>
#include <iostream>
#include <stdlib.h>
using namespace std;

// Interface for Resin Transfer Molding (RTM) to be used to in the simulation program.
class IRtm {
public:

IRtmO;
virtual ~IRtm();
virtual string get_filename() = 0;

/*
* Function initializes all value(s) to prepare for the execution of the RTM program

* PLEASE NOTE: Function must be called FIRST!

*/
virtual void initialize() = 0;

/*
* Function executes preprocessing operations for RTM program returning the
* initial volume filled.

* PLEASE NOTE: Function must be called AFTER the initialize() and BEFORE the
* processO

273

* @param numfill is the current number of filled nodes - assumed zero at this point
* @retura total volume filled in model
*/

virtual void preprocess(int &numfill) = 0;

/*

* Function executes the processing operations for RTM program - solving the system.
* **

* PLEASE NOTE: Function must only be called AFTER calling the preprocess()
* function.
* **

* @param num is the number of filled nodes
* @param sumf sum filled/volume
* @param flops number of floating-point operations
* @param solvetime total time for execution - in milliseconds
* @param verbose if true outputs verbose info.
*/

virtual void process(int &num, double &sumf, long long int &flops, double &solve_time,
bool verbose = false) = 0;

};
#endif/*IRTM_H_*/

Sub-class of RTM (Fertm.h):

#ifiidefFERTM_H_
#define FERTM_H_

#include "IRtm.h"
#include "FertmModel.h"
#include "FertmParser.h"
#include "CStopWatch.h"

274

#include "CircValidate.h"
#include "Write.h"

class Fertm : public IRtm {
protected:

FertmModel model_; FertmParser parse_;
public:

Fertm(int argc, char **argv);
virtual ~Fertm();

// Function returns the current filename of the input file being "solved" by this class,
string get_filename();

// Function returns the current "partitioned" filename being used for MPI-based
// parallelism, if any
string get_pfilename();

// Function performs initialization operations such that the FERTM 2D program can
// execute properly,
void initializeO;

/*
* Function executes all preprocessing operations for the FERTM 2D program to execute

* properly.

* @param numfill current number of filled nodes - assumed zero at this point
* @retum total filled volume after preprocessing
*/

void preprocess(int &numfill);

/*
* Function executes the processing operations for the FERTM 2D RTM - solving the
* system.

* PLEASE NOTE: Function must only be called AFTER calling the preprocess()
* function.

* @param num is the number of filled nodes
* @param sumf sum filled/volume
* @param flops number of floating-point operations

275

* @param solve_time total time for execution - in milliseconds
* @param verbose if true outputs verbose info.

*/

void process(int &num, double &sumf, long long int &flops, double &solve_time,
bool verbose = false);

#endif/*FERTM H */

276

Appendix C

The algorithms from chapter 2 of this dissertation defining the LCM solution strategy,
sparse matrix-vector, and the preconditioned conjugate gradient iterative solver for sparse
symmetric positive defmitive matrices.

Algorithm 2.1: Implicit Pure FE methodology for LCM Computation

(For time step n +1 and iteration m)
1. REPEAT

2. SET {v. Y^^ to {^,.}" (save previous fill factor values)

3. CALL assembleC for C. (assembleC forms lump mass matrix)

4. CALL assembleK for Ky (assembleK forms stif&iess matrix K)

5. CALL assembleLoad on q, (assembleLoad forms load vector 9)

6. REPEAT
7. SET boundary conditions on K^j

(Modified load vector g)

8. SET {g, }„ to C, {^,}" - C, {^,}-;' + M{q, }„

(Where K.j is K matrix with boundary conditions applied)

9. SOLVE Li:,]„{/',L=kL
(Compute new nodal resin fraction field using equation (4))

10. SET C„ {^, n = C„ {^, r - A/[iC, fc \^ + M{q^ },„

Q ^i }"t', - Q {^, }"^' < # THEN 11. IF ^,.,,.,.. ^,

12. BREAK
13. ELSE

14. sET{^,}::'to{^,}

15. ENDIF
16. UNTIL mass resin convergence
17. UNTIL all nodes are filled

1H+1

im+1

277

Algorithm 2.2: Preconditioned conjugate gradient (solves Ax = b)
Input: Matrix/I and load/force vector i
Output: solution vector x

1. Set rg ^b-Ax^

2. Set z,^M-'r,

3. Set Po^^o
4. Set A; <= 0

5. DO UNTIL CONVERGENCE

6. . ry A "^ ^,

Pk Apk

7. x,^,^x,+a,p,

8. f'kH ^r,-a,Ap;^

9. IFJr.-r,,, <^) BREAK

10. z<+i^^"''-A+i

11.
z^ r

Pk ^ '":*"'
^k rk

12. Pk^X ^ ^A+l + PkPk

13. k<^k + \
14. END DO

278

Algorithm 2.3: Sparse Matrix-Vector Multiplication (CSR Compression)

Input: Non-zero vectordat, load/force vector/?, row pointerrptr, column indices c/(5tc, and row

length M
Output: solution vector x

1. Set / ^ 0

2. Set 7 <= 0

3. Set A: <= 0

4. DO WHILE {i < M)

5. Set j <= rptr[i

6. Set k <= rptr[i +1

7. DO WHILE {j < k)

9. Set x[/J<= x[/]4 - [dat j xb cidx j)

10 Set ,/• en 7 +1

11 END DO
12 Set /■<=/ + !
13 END DO

279

Appendix D

This appendix contains TECPLOT visualized results of resin flow progression contours
of the input unstructured meshes.

Device: CPU

Time Filled
(millisecands)

Figure 96. Time filled for unstructured mesh MA CPU-Only (System A)

280

Device: GPU

Time Filled
(milliseconds)

Figure 97. Time filled for unstructured mesh MA single CPU/GPU (System A)

The following are the time-filled TECPLOT images for validation using the 2D circular
plate model that was compared to analytical solution.

281

> 0

(a.) CPU Fill Time (b.) GPU Fill Time

Figure 98. Time filled single CPU/GPU with circular plate (System A)

10

_ TFI« 8
■ 73.62S0
■ sa.rsoo e
i"^ 63.8750

' M.OOOO
—■ M.1260 4
—' 49.2500
—1 44,3750
— 39.5000 --
—• 34 6250
—1 29.75Q0 >- 0

1 24.B750
—1 20.0000
md 1S.12S0 •2
■ t0.26OO
■ 5.37S0 -4

10
-10

-10

(a.) CPU Fill Time - 2 Partitions (b.) GPU Fill Time - 2 Partitions

Figure 99. Time filled multiple CPU/GPU with circular plate (System A)

282

(a.) CPU Fill Time (ms.) (b.) GPU Fill Time (ms.)

Figure 100. Time filled single CPU/GPU with circular plate (System B)

10
^^^'fS^JX \?/ ^a^^ga^ JI-'^BST/VSL' ^jyTVTjfc^

B r y;^M^ 'S Wm^ 8 - y^^^. Wip]^ li^
6 '- A

^^^^ /K?WK^o'>alk 6 ;- /^^^^^m ̂ ^^ ^k

4 -£^ ̂ ^^
^^jWi/-oSiiArCTV75^^a

4 L ^^^^^^m ̂ ^MM v"/v||fc
iS^^^MS^VTv^VT^Slk Tune Filled 'T^v-Sl^ TuneFiUed ^^^^s H^^^^v^^ a 73B25

r^ 6875 2
t^r^!^^^^^ 1^^^ ̂ ^^k ■ 73625

M 6875
■*fcJs^2gJ^MM ■HH^HHHBa^^r^TS<i^''V'''!:^ —^ 63 875 '\ i~^i<-P^^^Mf^SmUS^ BBwi^ifejfe £~t--5¥^^i^^ 63875

>■ 0
t^T^^^^Hi ■ ^^mm^^^T^i^A —' 59

54 125 >- 0 _ ^.^T^rp^f^rfe^BHI^B HHffi^r ̂ i~+-?^J 59
54,125

+~;^v.Li!taSiHBH ~~ 49 25 ^-^^^vtir'V^f^kt^i'mSS^^^^ ^^^HHBSK^ S jij-; vfp^i^i 4925

-2
^'^^QiAvv^H^H ^^^^^HHIyT^vT^r^^^^^v-^J]^ — 44 375 ^ i.ri-W A'^\---r"A5f!S«I^^H ^^HHRK^^ ̂ ^^Tr^m 44375
' VAJT'/'V-J'^^HB i^^^^HHIp^^:^7*SO\ r^-~iff^^ — 395 ^ r''"!itr'\'7>^-?v^7fe!HiH^H ^^HHHHRTK.'I* ^^\Tf^m 39 5

vS^f^F^u^^^ Wm^S^^^^^^^'^^^^^^^^^^'^-i^S^y'^^^ — 34,625 \ / ,^ \'-^'^\^^'T^^^aSm IIIIBIIS^^T? ~ ASO'*T^^W ~~ 34625

-4 " Vi ̂ ^^^m m^^^^^^^ ~" 29 75
24B75

-4 7 ^y^^^^^^^m. !^^^^ x^^^ 2975
24875

-6 r '*^ ̂ ^^m rf-^^^^>^ ~ 20
15.125 -6 - ^/^P^^^¥ ff ^' "^ I iW 1

20
15125

k ^^yjSQ/'rr ■kX~ (X^^r'C^^L^s^^^^^^ ■ 10 25 ^X^i^^CL^^^wA^^^ li*^*
\ ~^ a 1°^^

-a

-.
^Xt^ T^^r"^^^

■ 5375 -B
'. ^^s 'V ■ 5 375

^t\/v^iL^^ 11 1

-'^10 -5 0 5 10
X

0 5 10

(a.) CPU Fill Time (ras.) - 2 Partitions (b.) GPU Fill Time (ms.) - 2 Partitions

Figure 101. Time filled multiple CPU/GPU with circular plate (System B)

283

Figure 102. Input mesh model lOFT multiple partition time-filled comparison (System A)

284

120 r i^'J-p^r >~<^^><^''■•'0

-10^«,X., ><,-<^ 30

CPU 2-Partitions

20

30

0 X^'40
n<<^^ 10 z

GPU 2-Partitions

- ,-'-=C-' -20
^X..>-'^-10

^ C .X. ><^20

h io<o-^0

1«.91
IS.M
14,72
13 63
12.53
1M
10.34
9.25
3.15
1<X
SW
*S&
3.75
2.86
1.50

CPU4-Partitions.< GPU 4-Partitions

Figure 103. Input mesh model 10FT multiple partition time-filled comparison (System B)

285

B-3 Probabilistic Analysis of Property Uncertainties using Resin Infusion Flow
Modeling and Simulations

Physics based flow modeling provides an effective way to simulate the resin infusion process in
liquid composite molding processes for polymer composite structures. These are effective to
provide optimal injection time and locations for given process parameters of resin viscosity and
preform permeability prior to resin gelation. However, there could be significant variations in
these two parameters during actoal manufacturing due to differences in the resin batches, mixes,
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for
permeability. Research to understand the influence of uncertainties in these parameters on the
resin infusion time was initiated via a probabilistic modeling methodology using resin flow
modeling and statistical analysis. Project activities and discussions from this work are presented
next.

Preform and Resin property uncertainties, role, and their effect in liquid
composite process flow modeling

Authors: Ram V Mohan, Henok Shiferaw, Vinaya Kelkar, Ajit Kelkar

Pubhshed Paper: SAMPE 2012, Long Beach, CA, Paper 3230

ABSTRACT

Physics based flow modeling provides an effective way to simulate and understand the resin
infusion process in liquid composite molding processes and its variants. These are effective to
provide optimal injection time and locations for given process parameters of resin viscosity and
preform permeability prior to resin gelation. However, there could be significant variations in
these two parameters during actual manufacturing due to differences in the resin batches, mixes,
temperature, ambient conditions for viscosity; in the preform rolls, compaction, etc., for
permeability. The influence of uncertainties in these parameters on the resin inftision time is
investigated using resin flow modeling and statistical analysis. Application of the process flow
modeling and statistical analysis to understand the effect of preform and resin property
uncertainties is demonstrated via a composite helicopter prototype part processed via vacuum
assisted resin transfer molding. The probabilistic modeling methodology resulted in confidence
envelopes to determine the probability for successfiil resin infusion prior to gelation, and
estimate resin infusion time for any combination of viscosity and permeability. The effectiveness
of these confidence envelopes to determine the probability for resin infusion success and

286

estimate the infusion time without a need for additional simulations and its usefulness for
composite manufacturing engineers and technicians is presented.

INTRODUCTION

The manufacturing cycle time during resin infusion in liquid composite molding (LCM) of
composite structural parts is influenced by various process and material conditions that include
location of injection gates, fiber preform permeability, and resin viscosity. Successfiil infusion of
dry fiber preform in LCM processes such as resin transfer molding (RTM) and its variants is one
of the most complex and critical stages, and directly impacts the process performance and final
quality of the part. Extensive effort has been conducted over the years on process flow modeling
simulations for LCM processes and has been applied to several prototype developments
[1,2,3,4,5]. Most of the process flow modeling approaches is based on deterministic models
employing finite element based approaches for the space discretization. One such deterministic
modeling methodology is an implicit transient approach based on transient mass conservation of
the resin that has been validated and successfully demonstrated for very large scale simulations
[5,6,7].

Deterministic physics based process flow modeling and simulations enable the down selection of
optimal process parameters such as the injection gate locations. By analyzing various process
scenarios through virtual simulations, effects of material and mold configurations can be
thoroughly analyzed, even for a complex part. These deterministic process modeling simulations
enable to study the effects of material, process and mold modifications, and obtain an optimal
injection condition. This optimal condition can be subsequently employed during actual
manufacturing process. Resin progression for the optimized injection condition and associated
expected resin infusion time are based on specific values of key process parameter variables
(fiber preform permeability and resin viscosity) that significantly influence the success of resin
infusion. However, day to day, and batch to batch variations in the fiber preform rolls and
preform layup differences can lead to variations in the fiber preform permeability. Similarly
variations in the resin batches, ambient conditions, etc., can lead to differences in the resin
viscosity. For a given composite part and mold configuration, injection gate conditions, any
differences during actual manufacture of these two key process parameters can lead to significant
variations from the modeling predictions. Deterministic modeling of all such variations of these
two key process parameters would require significantly large number of flow modeling analysis.
Variations in these two key parameters can be examined through statistical analysis, and
provides an effective way to analyze their uncertainties, and develop confidence envelopes based
on infusion time obtained from the simulations, and subsequently define the probability for
successful infusion prior to resin gelation.

287

The present work employs a statistical analysis approach to analyze influence of uncertainties in
these two process parameters of resin flow infusion. The statistical examination is built upon
process flow modeling and simulations, and statistical analysis techniques. The influence of
uncertainties in two key process parameters of resin viscosity and preform permeability on the
resin infusion time is investigated. Resin infusion time output results for variations in the
preform permeability and resin viscosity for given injection conditions are utilized to develop
confidence envelopes using the calculated Cumulative Density Function (CDF). The obtained
CDF is used to determine the probability for completion of resin infusion prior to physical resin
gelation time.

The application of this methodology for simultaneous variations of these two key processing
parameters in LCM processes is presented, and demonstrated for a composite helicopter
prototype part. The probabilistic modeling methodology resulted in confidence envelopes to
determine the probability for successful resin infusion prior to gelation, and estimate infusion
time for any combination of viscosity and permeability for a composite part and associated
injection conditions. The effectiveness of these confidence envelopes to determine the
probability for resin infiision success and estimate infusion time without a need for additional
simulations is demonstrated.

Present paper is organized as follows. A brief discussion of the process flow modeling
methodology is described. This is followed by discussions on the application of the process
modeling methodology and correlation with actual process observations for a composite
helicopter prototype part processing. This composite part configuration also provides the
demonstration application for the statistical analysis and development of the confidence
envelopes. Details of the statistical analysis, development of confidence envelopes and results
are discussed next. The probabilistic modeling methodology though illustrated with a
demonstrative composite part configuration is applicable for other composite structures and
provides an effective method to analyze and understand the effect of variations in resin viscosity
and preform permeability. Furthermore, the developed confidence envelop provides
manufacturing engineers and technicians a quick tool for evaluating the potential for successful
resin infusion for any composite process run using the associated resin viscosities (for example,
obtained through resin viscosity sampling) and preform permeabilities on any given day of
manufacture. Examples of such scenarios are illustrated for this demonstrative composite
prototype part configuration.

Resin Infusion flow modeling

Process Modeling Methodology

Resin mass conservation and infusion flow models in LCM processes address the macroscopic
transient resin flow infiltration through a complex fiber preform. Resin infusion flow modeling

288

method used in the present work employs a transient resin mass conservation equation coupled
with the Darcian flow behavior (momentum conservation) in conjunction with a pure finite
element methodology that is used for tracking resin progression inside a complex mold cavity,
representing the net-shape composite structural part. The presence of the resin in an Eulerian
mold cavity is tracked using a state variable ^, defining the resin infused state of the region. The
state variable ^ varies between 0 and 1. The value of the state variable is 1 in the completely
resin infused regions of mold cavity and 0 in the non-infiised regions of mold cavity. The
pressure gradient in the partially filled regions where the value of the state variable is between 0
and 1 is taken to be negligible. The integral form of the transient mass conservation equation is
thus given by

dt"
—VP dQ.

[1]

where, K is the permeability tensor, n is the resin viscosity, P is the pressure field, and !F is a
state variable representing the infused state of the resin. Further details are available in
references [5] and [6]. The permeability tensor is a second order tensor with four terms, with
three of them unique, in most aerospace structures made of thin composite preform layers, where
the flow velocity is primarily in the in-plane directions. Such thin composite structural
configuration and analysis has been employed for the composite prototype part configuration.

Transient resin flow progression in the fiber preform geometry is analyzed through finite element
geometry discretization via a pure finite element methodology [5] that is based on the above
transient mass conservation equation. The state variable T (0 < T < 1) represents the infused

state of a mold cavity region. 4^ = 0, represents the non-infused regions of dry fiber preform
during transient flow. ^ = 1, represents fully infiised regions of dry fiber preform. Applying the
Galerkin weighted residual formulation to the transient mass conservation equation, and
introducing the finite element approximations for both state variable NK, and pressure field P,
leads to a discretized system of equations given by

OF + XP = ^ [2]

In equation 2, C is the mass matrix representing the pore volume, K is the stiffness matrix
associated with the pressure field. The time derivative term is discretized using equation 3.

VJ/^^i+l n_ pn

A/

In the above equation. A/ is the time step size for the transient problem, and q is the force vector
representing the injection conditions. The boundary conditions are given by

289

dp
— = 0 at mold walls,
dn

/* = 0 at flow front, and

P = PQ prescribed pressure at inlet [4]

or

1-^0 prescribed flow rate at inlet,

where Pg and q^ represent prescribed pressure and flow rate at the inlet(s), respectively.

Initially, at time t=0,
T = 1 at the inlet and

T = 0 elsewhere. [5]

The pure finite element methodology iteratively solves for the state variable, ^, that defines the
infusion state and the associated pressure until complete mass conservation is achieved at each
time step. A resin infiision flow modeling code based on the above methodology for a thin shell
2.5D composite flow configuration is employed for the flow modeling simulations presented in
the present work.

Process Flow Modeling Application to a Composite Helicopter Prototype Part

Process flow modeling analysis was employed to obtain optimal line based infusion
configuration for a complex, composite helicopter prototype part consisting of bi-directional
carbon preform and epoxy resin. Figure 1 presents the geometry and computational finite
element mesh for a 2.5D thin shell resin infiision analysis. The complex part is approximately
1.016 m X 0.635 m, with a compacted preform thickness of 0.18 cm. The permeability of the
plain weave, bi-directional preform employed is 22.58E-10 m^. The viscosity for the epoxy resin
used in the prototype part processing is 0.35 PaS. Resin infiision is driven by an atmospheric
vacuum pressure differential of 98.2 KPa. Six different line based resin injection schemes were
analyzed for the resin flow progression and total infiision time. Figure 2 presents the resin
infusion progression from these process flow modeling simulations. The temporal resin
progression contour is coded from blue to red showing the time progression of resin infusion.
Table 1 presents the predicted resin infusion time obtained from flow modeling in each line
based injection scheme. While the line based injection scheme B and C predicted higher resin
infiision times, injection configurations E and F predicted lower resin infiision times.

290

Figure 1. Composite prototype part and finite element mesh.

For the prototype part infiision, the placement of resin feed line along the curved part edge
presents practical difficulties. Injection scheme F required two resin feed lines. Based on these

TF !
fs ef 02
m 60fe3 ^«
i™ ^m ,—, 47S9 — 433S — ^)D3
y—, am
f"- 3037
J— :^ci4
I . 217 J
^ 1?3?

IM ^Y\
m -^36

Injection scheme A Injection scheme B

Injection scheme C Injection scheme D

Injection scheme E Injection scheme F

Figure 2. Transient resin flow progression with different line injection schemes.

practical considerations and predicted resin infiision times obtained, resin injection scheme - A

291

was selected for the prototype fabrication of this helicopter composite panel and employed in the
actual prototype processing process. Flow progression observations from the prototype
processing of this composite part are presented and discussed next.

Table 1. Predicted resin infiision time.

Model Total FiU Time
(minutes)

Injection scheme A 37
Injection scheme B 120
Injection scheme C 115
Injection scheme D 28
Injection scheme E 23
Injection scheme F 31

Prototype Part infusion and simulation comparison

Vacuum based resin infusion for this composite prototype part was setup in our processing
laboratory employing line injection scheme - A via the H-VARTM process [8]. Resin infiision
was performed with an aerospace grade epoxy resin with a flow viscosity of 0.35 PaS. Resin
progression during this prototype part processing was observed and the resin infusion time was
recorded. Figure 3 presents a snapshot of the resin progression during the infusion. The dark
lines marked show the fully saturated resin front location at an instant of time that is used for
simulation comparisons.

Figure 3. Snapshot of resin progression dming prototype part infiision.

292

The infusion time for this prototype processing was about 45 minutes and is in good comparison
with the predicted infiision time from prior process flow modeling simulations. The following
were however observed during this prototype part resin infusion process. During the resin

infusion, air bubbles were observed in the infused region and resin feed line. This required the
resin feel line to be closed, check the sealing to ensure that there are no vacuum leaks; block the
resin feed line on the preform midway, and restart the infusion process. Air bubbles, resin feed
line modification, and vacuum leaks significantly influence resin progression and increase the
infusion time. This corrective action resulted in an altered and new filling pattern that deviated
from the resin progression from simulations shown for the injection scheme - A in figure 2.

To understand the effect of this change in resin infusion and to check the capability flow
modeling simulations to capture and emulate these variations, the injection boundary condition
in the selected injection configuration - A was modified. The injection pressure differential in the
flow modeling simulations was modified to match the conditions during actual prototype
processing. This was emulated in the process flow modeling simulations through a pressure drop
that varied only half way through the feed line from the injection end. This modified injection
condition employed in the process flow modeling resulted in a new predicted infusion time of 47
minutes. This concurs well with the infusion time obtained for the actual composite prototype
part processing. Furthermore, the simulated resin front progression based on the above modified
injection conditions showed reasonably excellent agreement to that obtained from the actual
composite prototype part processing. The marked flow front line in black in figure 4 represents
the resin saturated region from the simulations at the same instant of time as shown in the
prototype part processing in figure 3. This flow front snapshot and resin progression patterns
from the simulations demonstrated good agreement with that of the actual progression for this
composite prototype part. Clearly, process flow modeling simulations emulate and capture the
process variations during resin infiision if accounted correctly.

TFill
2808
2805
2303
2801
2801
2800
2793
2635
2284
1933
1583
1232
832
531
180

Figure 4. Transient resin front progression with modified injection condition.

293

The success of infusion on any given day during the production process however would depend
on the completion of resin infusion prior to gelation. The infusion time for any given injection
conditions are influenced by the variations in the preform permeability and resin viscosity. The
preform permeability can show uncertainties and variations from batch to batch; variations
during layup, vacuum pressure differential, etc. Resin viscosity can show variations and
uncertainties from one manufacturing process run to the next. The understanding of these
variations and obtaining predicted infusion time for the conditions on any particular day will
require another process flow modeling simulation, preferably in real time that could become
realistically impractical. A probabilistic analysis of these preform and resin preform
uncertainties, their role, effect, and potential utilization of such analysis during actual day to day
manufacturing are presented next.

Probabilistic analysis of property uncertainties

Composite process flow modeling simulations enable analysis of various process injection
scenarios for optimal injection gate locations; understand subsequent effects of material and
mold variations to ensure complete infusion prior to gelation. For a given mold and injection
scheme configuration, resin infusion time are dependent upon the specific values of key process
variables, preform permeability and resin viscosity and impact successfiil resin infusion. During
repeated manufacturing, day to day, and batch to batch variations in fiber preform rolls and
preform layup differences lead to variations and uncertainties in preform permeability. Similarly,
resin batch variations and ambient conditions could cause variations and uncertainties in resin
viscosity. Both critically influence the resin infusion time and success of resin infusion.
Statistical variations and distributions of these two key process parameters were studied. A
number of process flow modeling analysis for the composite helicopter prototype part, one for
each of the statistically distributed permeability and resin viscosity parameter values were
performed to obtain the corresponding resin infusion time. This provided a distribution of
expected resin infusion time for the associated distributions of variations and uncertainties in the
preform permeability and resin viscosity. Cumulative Density Function (CDF) of the obtained
resin infusion time distribution was employed to obtain confidence envelopes. All statistical data
analysis was performed using SPSS [9]. CDF and confidence envelopes determine the
probability for completion of infusion before a specified resin gelation time for any combination
of resin viscosity and preform permeability. Details, results and discussions from the
probabilistic analysis for the prototype composite part are presented next.

294

Composite Helicopter Part
Uncertainties

Probabilistic Analysis of Permeability and Viscosity

Statistical distribution of permeability and resin viscosity to understand the uncertainties were
obtained employing statistical analysis package SPSS with a viscosity range of ±20% of a mean
resin viscosity value of 0.35 PaS, and a ±50% variation from the mean permeability of 22.58E-
10 w . Statistical analysis of the resin viscosity variation individually (keeping permeability
constant) showed a linear variation in the computed resin infusion time. As expected, the resin
infusion time increased with increase in viscosity.

Histogram

Figure 5. Resin infusion fill time distribution due to uncertainties in permeability and viscosity.

Analysis of permeability variation individually showed a non-linear decrease in resin infusion
time with increasing permeability. Based on this, five different viscosity values within the resin
distribution and fifty different permeability values within the permeability distribution were
selected for the statistical analysis of the coupled permeability and viscosity variations and
uncertainties. This permitted a good statistical distribution of resin infusion time to be obtained
to understand the coupled uncertainties in resin viscosity and preform permeability.

Figure 5 presents the statistical distribution of the resin infiision time obtained from the process
flow modeling simulations. The coupled permeability and resin viscosity uncertainty shows a
skewed distribution though viscosity and permeability had a normal distribution. This confirms
the non-linear effect from coupled viscosity and permeability uncertainties. Statistical analysis of
the resin infusion data for this composite helicopter part and "line injection scheme - A" showed
that viscosity contributed to 25% of the variation in the resin infusion time, while permeability
contributed to 68% of the variations in the resin infiision time. Cumulative Distribution Function
(CDF) and probability for the resin infusion fill time (FT) to be less than a specified resin

295

gelation time (GT) were obtained from the normalized distribution of the resin infiision fill time.
Viscosity and permeability ranges for 80% and 95% probability/confidence level for the resin
infusion fill time (FT) to be less than the resin gel time (GT) is presented in Table 2. A resin gel
time (GT) of 55 minutes was used.

Table 2. Viscosity - Permeability range for successful infusion.

Viscosity {Ibf-s/inI PaS) Permeability (in' / m^)
80% Confidence Level

4.56 X 10"V 0.315 K>2.70x 10""/ 17.80E-10
4.73 X 10"V 0.327 K>2.80 X 10"V 18.06E-10
5.07 X 10"'/0.350 K>3.00x 10"*'/19.35E-10
5.36 X 10"V 0.370 K>3.32x 10"V21.42E-10
5.92 X 10"'/0.409 K>3.49x 10"V22.52E-10

95% Confidence Level
4.56 X 10"'/0.315 K>2.90x 10"Vl8.71E-10
4.73 X 10"'/0.327 K>3.00x 10"Vl9.35E-10
5.07 X 10"'/0.350 K>3.52x 10-''/22.71E-10
5.36 X 10"'/0.370 K>3.73 X 10"V24.06E-10
5.92 X 10"'/0.409 K>3.98x 10"V25.68E-10

Figure 6 presents the viscosity and permeability ranges that would ensure 80% and 95%
probability and confidence of resin infiision fill time (FT) to be less than the gelation time (GT)
for successful infusion. Any permeability and viscosity combination that is within the shaded
region of figure 6 would indicate the associated probability and confidence level of successful
infusion. For example, permeability - viscosity combination within the 95% confidence interval
shaded region in figure 6(a) would indicate a 95% probability of successful infusion prior to
gelation. This confidence for successfiil infiision can be obtained without a need for additional
real time simulations with the associated viscosity and permeability on the actual day of
manufacture.

296

PernnjbJIIty (10E-6), ln''2 Ptrmcability (10E-6). in'^Z

(a) 80% confidence level (b) 95% confidence level

Figure 6. 80% and 95% confidence envelope for permeability and viscosity uncertainties.

The expected infusion time can also be estimated from the probability and the associated resin
infusion fill time data obtained from the statistical analysis [10]. For large complex parts, the
computing time for the flow analysis can be significant and preclude any real time simulations.
Probabilistic analysis and confidence envelopes as discussed in this paper can be developed for
any composite part and processing configuration prior to actual full scale manufacturing. This
not only enables an understanding of the effect of permeability and viscosity uncertainties prior
to full scale manufacture. It also provides an effective means to determine the probability of resin
infusion success based on the conditions and variables during actual manufacture to estimate the
expected resin infusion time without a need for additional full scale process flow modeling
simulations. The potential application of the developed confidence envelope is demonstrated
next.

Application of Confidence envelope

The probability analysis methodology for understanding the uncertainties discussed in this paper
can be applied for any composite part processing application. The technique can be expanded
and is applicable even if there are varying regions of permeability within a complex part to
further consider their associated uncertainties. The developed confidence envelopes provide
composite manufacturing engineers and technicians an easy to use analytical capability to
determine the probability and confidence of successful infusion prior to resin gelation and
estimate infusion time for a combination of preform permeability and resin viscosity on any
given day of manufacture. This can be obtained without a need for additional flow modeling
simulations, and are effective to not only understand the effect of these parameter variations, but
also estimate the process success. This is more desirable and efficient in large complex

297

composite parts where the process flow simulations can take significant computational time.
Two demonstration scenarios of the application of the confidence envelopes developed for the
prototype composite helicopter part are illustrated next.

Processing Scenario 1

A composite manufacturing engineer/technician collects resin viscosity data and obtains the
preform permeability of the batch of preform used. On a given day, these values of resin
viscosity and permeability are 0.366 PaS and 20.97E-10 in respectively. This resin viscosity,
permeability data point is identified to be within the 95% confidence region for the prototype
composite helicopter part as shown in figure 7-a. In addition, an estimation of the expected resin
infusion time can also be obtained from a plot of the resin infusion time and associated
probability.

Processing Scenario 2

On a different day of manufacture, resin viscosity of the resin batch used is 0.389 PaS and the
permeability of the preform batch is 17.74E-10 rn. This viscosity, permeability combination is
within the 80% confidence region for the prototype composite helicopter part, but well outside
the 95%) confidence region.

Thus by using the pre-developed confidence envelopes associated with any composite part, a
composite manufacturing engineer and technician can estimate the confidence of successful resin
infiision prior to gelation on any given day of manufacture using the associated preform
permeability and resin viscosity values. Further, using their experience and knowledge over
several days of production, composite manufacturing engineers and technicians can decide if
corrective actions are needed prior to and during actual manufacture to ensure the success of
manufacture on any given day.

«J ~
.«-

,

I'» /
f j/

f y^
s; s.w-

-^-t--"""'"'''^

ti*.

^^^^^^.^

2» 3.1*

PsniMiaHISIr !10e.«). ln»J Ptrtnftabifny (1QE4). \t^2

a. Scenario 1 (95% confidence) b. Scenario 2 (80%) confidence)

298

Figure 7. Application confidence envelope during actual manufacture.

Concluding remarks

Process flow modeling simulations and analysis of resin infiision in LCM processes are effective
to obtain resin infusion time and understand transient progression of resin enabling the
determination of optimal injection conditions. However these simulated behaviors are based on
the key process parameters of preform permeability and resin viscosity employed in the
simulations. Significant variations in these two key process parameters can occur during the
actual manufacture and during production cycle for a composite part. A probabilistic analysis
approach for coupled effect of uncertainties of these two key process parameters using resin
infusion process flow modeling simulations was presented. The applicability of the methodology
was demonstrated for a composite prototype part processing employing vacuum based resin
infusion. The computational modeling framework and probabilistic methodology that resulted in
the development of confidence envelopes provides composite manufacturing engineers and
technicians an estimate of the confidence for successful resin infusion prior to resin gelation, and
expected resin infiision time on any given day of manufacture using the associated preform
permeability and resin viscosity values. Furthermore, this can be obtained without a need for
additional flow modeling simulation analysis using associated parameters on the day of
manufacture. This provides an enabling and effective simulation based analytical capability for
composite manufacturing engineers and technicians coupled with their experience over several
infusion and processing runs to decide on corrective actions prior to, and during actual
manufacture to ensure success of manufacture on any given day and part production run. The
applicability of the confidence envelopes was demonstrated with illustrative scenarios based on a
composite helicopter prototype part. The techniques and methods discussed can be extended for
any composite structure and its processing with liquid resin infusion processes.

References

1. Bruschke, M. & Advani, S., "A Finite Element Control Volume Approach to Mold
Filling in Anisotropic Porous Media." Polymer Composites 11(1990):390-405.

2. Trouchu, F., Gauvin, R. & Gao, D., "Numerical Analysis of the Resin Transfer Molding
Process by the Finite Element Method." Advances in Polymer Technology 12(1993):329-
342.

3. Cai, Z., "Simplified Mold Filling Simulation in Resin Transfer Molding." Journal of
Composite Materials 26(1992):2606-2630.

4. Lin, R., Young, W. & Lee, J., "Mold Filling and Cure Modeling of RTM and SRIM
Processes." Composite Structures 27(1994): 109-120.

299

5. Mohan, R., Ngo, N. & Tamma, K., "On a Pure Finite Element Methodology for Resin
Transfer Mold Filling Simulations." Polymer Engineering and Science 39(1999):26-43.

6. Mohan, R., et. al., "Advance Manufacturing of Large Scale Composite Structures:
Process Modeling, Manufacturing Simulations and Massively Parallel Computing
Platforms." Advances in Engineering Software 29(1998):249-264.

7. Mohan, R., et. al, "Three Dimensional Resin Transfer Molding: Isothermal Process
Modeling and Implicit Tracking of Moving Fronts for Thick Geometrically Complex
Composites Manufacturing Applications." Numerical Heat Transfer - Part A,
Applications. 35(1999):839-858.

8. Bolick, R., & Kelkar, A. H-VARTM Processing, US Patent Application Number:
12/361224, Publication Number; US 2009/0189320A1

9. SPSS Version 20, 2011, SPSS hic, Chicago, IL.

10. Shiferaw, Henok. Probabilistic Analysis of Property Uncertainties Using Resin Infusion
Flow Modeling and Simulations - Resin Viscosity and Preform Permeability. MS Thesis,
North Carolina A&T State University, Greensboro, NC, 2011.

300

Statistical Analysis of Uncertainties in Deterministic Computational Modeling
- Application to Composite Process Resin Infusion Flow Modeling

Authors: V. Kelkar, R. Mohan, H. Shiferaw, and A. Kelkar

North Carolina A&T State University

Greensboro, NC, USA

Journal Article: Communications in Statistics - Simulation and Computation
DOI: 10.1080/03610918.2013.815775

Abstract

Deterministic physics based flow modeling provides an effective way to simulate and

understand the resin flow infusion process in liquid composite molding processes and its

variants. These are effective to provide optimal injection time and locations prior to

gelation for given process parameters of resin viscosity and preform permeability.

However, there could be significant variations in these two parameters during actual

manufacturing. This paper presents simulation based statistical analysis of uncertainties of

these process parameters involved in the resin flow infusion. Two key process parameters,

viscosity and permeability and their statistical variations are examined individually and

subsequently in combination for their impact on the associated injection time. Values from

statistical probability distribution of the process parameters were employed to find the

solution space for this engineering application through deterministic physics based process

flow modeling simulations. A bivariate confidence envelope was developed using the

appropriate Cumulative Density Function (CDF) for a 95% probability of successfully

completing resin infusion prior to physical resin gelation time. A logistic regression model

for the influence of resin viscosity and permeability on the binary response of

successful resin infusion is presented and conforms well to the sensitivity analysis

inferences.

Keywords: Uncertainty quantification; Composite process flow modeling; statistical analysis;

Deterministic computational modeling and parameter variations; logistic regression analysis;

301

Introduction

Liquid composite molding (LCM) processes such as resin transfer molding (RTM), vacuum
assisted resin transfer molding (VARTM), and its variants are increasingly used as
manufacturing processes for composite structures [1,2,3,4]. A schematic of the liquid composite
molding process for composite structures is shown in figure 1. These processes are based on the
impregnation of a net-shape dry fiber preform with a low viscosity polymeric resin. The
polymeric composite part is then formed after the complete infiltration of the dry fiber preform
prior to resin gelation and subsequent curing reaction. The manufacturing cycle time during resin
infiision is influenced by various process and material conditions including the location of the
injection gates, fiber preform permeability, and resin viscosity. Successfial infiision of the dry
fiber preform in liquid composite molding processes is one of the most complex and critical
stages in the process and directly impacts the process performance and final quality of the part.
Resin infusion has to be completed before physical resin gelaUon while the resin can sfill flow.
This limiting time for a resin is characterized by its resin gelation time.

Deterministic physics based process modeling and simulations enable the down selection of
optimum process parameters such as the injection gate locations. Extensive effort has been done
over the years on process flow modeling simulations for resin flow infiision and has been applied
to several prototype developments [5,6,7,8,9,10,11]. These deterministic simulation based
optimal conditions can be subsequently employed during the actual manufacturing process.
These optimal process conditions are based on specific values of key process parameters of fiber
preform permeability and resin viscosity that significantly influence the success of resin infiision.
However, day to day, and batch to batch variations in the fiber preform rolls and preform layup
differences during manufacturing can lead to variations in the fiber preform permeability.
Similarly variations in the resin batches and ambient conditions can lead to differences in the
viscosity. Such variations in the key parameters can be examined through statistical analysis, and
provides an effective way to analyze these key process parameter uncertainties, and develop
associated confidence envelopes.

In the present paper, we describe a non-deterministic statistical simulation analysis approach to
analyze the influence of uncertainties in the process parameters for resin flow infiision. The
statistical examination is built upon deterministic computational physics based process flow
modeling simulations, and statistical analysis techniques. Two key process parameters and their
statistical variations are examined, initially based on individual parameters and subsequently as a
combination of these two parameters. The data values from probability distribution of the key
process parameters determine the modeling analysis solution space. A confidence envelope is
subsequentiy developed using the calculated Cumulative Density Function (CDF). Statistical

302

CDF determines the probability for completion of infusion prior to a physical resin gelation time
for variations in a real-valued random variable (for example, a key process parameter) with a
given probability distribution. Such confidence envelopes are obtained for variations in a single
parameter and coupled two parameters. Our approach thus employs non-deterministic statistical
analysis in conjunction with deterministic physics based computational modeling and
simulations. This provides an effective way to analyze and understand the effect of key
parameter variations on the resin infusion success. The confidence envelopes obtained through
statistical analysis provides an effective means to determine the probability for successful resin
infiision prior to resin gelation time for the actual process parameters that can change. Further,
the expected resin infusion time can be obtained without a need for additional full scale
simulations. In engineering applications, due to inherent uncertainty and variation in materials
and processes, model and simulation based uncertainty quantification within an appropriate
statistical probabilistic framework is required. Present paper provides and demonstrates the
application of such a statistical simulation analysis framework within the context of resin
infusion flow modeling for liquid composites processing.

Deterministic Resin Infusion Flow Modeling

Resin mass conservation and process flow models address the macroscopic transient resin flow

infiltration through a complex fiber preform in LCM processes. The deterministic resin infusion
flow modeling method in the present work employs a transient resin mass conservation equation
coupled with the Darcian flow behavior (momentum conservation) in conjunction with a pure
finite element methodology that is used for tracking the resin progression inside a complex mold
cavity representing the net-shape composite structural part. The integral form of the transient
mass conservation equation solved during process flow infusion modeling is given by

d A

(1)

where, K is the permeability tensor, \\ is the resin viscosity, P is the pressure field, and T is a
state variable representing the infused state of the resin inside the mold cavity. The permeability
tensor is a second order tensor with four terms, three of them unique, in most aerospace
structures made of thin composite preform layers. Transient progression of the resin through the
fiber preform geometry is analyzed with a pure finite element methodology [9] that is based on
the above transient mass conservation equation. Further details are available in references [9] and

[10].

Optimization of injection locations based on these deterministic physics based modeling have
employed genetic algorithms (GA), continuous sensitivity equation (CSE) analysis, and hybrid
approaches (coupled GA and CSE) to determine optimal injection gate location in LCM

303

[12,13,14,15,16,17,18]. These methods obtain optimal injection gate locations based on
minimizing the resin infusion time. Though these techniques allow the determination of optimal
injection gate locations employing deterministic modeling and simulation of resin flow infusion,
they do not address the stochastic, non-deterministic, statistical variations due to material,
process setup; their influence on the resin infusion time and flow progression once the optimal
injection gate location is obtained.

Non-Deterministic Statistical Analysis

In this work, effect of the uncertainties and variations in two key parameters (viscosity and
permeability) on the infusion time and flow front progression for a vacuum based resin infusion
process was studied.

Resin flow rate is governed by many process parameters, such as: a) Injection pressure, b) Mold
temperature, complexity, and fiber reinforcement; c) Resin chemistry and rheology (resin
viscosity), d) Permeability of the preform. For a given mold configuration (mold complexity)
and injection conditions (injection pressure), resin flow behavior is heavily influenced by
preform permeability and resin viscosity. The resin flow velocity through fiber preform given by
Darcy's law (equation 2), defines the flow behavior in process flow models and governs the resin
infusion or filling time (FT).

v = --VP
77 (2)

where; V = Velocity of Flow front

K = Permeability tensor

r] = Viscosity of the resin

V P = Pressure gradient (V: gradient operator)

Resin infusion and fill time (FT) thus strongly depends upon: Preform Permeability (K) and

Resin Viscosity (ri). Permeability is a physical property of the fibrous material quantifying the

resistance to resin flow. The filling time (FT) and resin infusion flow pattern depend heavily on

the preform permeability and is inversely related. Resin viscosity is another key important factor

in determining the infiision time. The success of resin infusion depends upon the complete

infusion of dry fiber preform prior to resin gelation. Every resin system has a certain gelation

time (GT) or "pot life", and it is important to complete resin flow infusion prior to this gelation

304

time. However, inherent variations and uncertainties in materials and processes affecting the
permeabihty and resin viscosity can lead to changes in resin fill time (FT) and impact the
successful infusion prior to resin gelation time. Statistical analysis of such variations and
uncertainties in these two key parameters is presented next.

Prior to analysis of coupled parameter variations, a sensitivity analysis was conducted to
determine the change in model output values of FT that may result from changes in model input
values (for resin viscosity and preform permeability). This sensitivity analysis thus measures the
change in the model output in a localized region of the input space. Implicit in this sensitivity
analysis were the assumptions that statistical distributions for the input values were correct and
that the model is a sufficiently realistic description of the processes taking place in the system.

First step was to examine the effects of changes in a single parameter value or input variable
assuming no changes in other inputs. The analysis was then extended to examine the combined
effects of multiple, but independent, sources of error (viscosity and permeability). Probability
distribution models were developed for each parameter around their fixed mean and standard
deviation values. Statistical models employed predict the probability for successful and
complete resin infusion before resin gelation defined by FT < GT. Sensitivity analysis for the
parameter uncertainties was developed using the following methodology:

Statistical Analysis Method:

(1) Generate the parameter space data to accommodate variations in two key parameters:
permeability and resin viscosity.

Variable values for permeability (K) and viscosity (ri) were generated using normally
distributed random errors model around a fixed mean (rf mean resin viscosity; x. mean
preform material permeability) using statistical analysis software. Normal distribution
was used to describe the distribution of these errors because it has been observed that
normal distribution often describes the actual distribution of the random errors in real-
world processes reasonably well. Further, mathematical theory behind the normal
distribution is well developed and supports inferences on fiinctions of data and processes
being modeled [19,20].

(2) Perform resin infusion flow modeling simulations for each of the variable values using an in-
house deterministic, physic based process flow modeling analysis code. Single parameter
models were generated for each input parameter of interest (r|, K) and then the model was
extended to include both viscosity and permeability, to estimate the corresponding resin
infusion time.

305

(3) Obtain the probability of success (complete resin infusion of the preform prior to resin
gelation). Appropriate cumulative density ftinctions (cdf) were used to calculate the
probability that the simulated resin infiision time (FT) based on given permeability and resin
viscosity values will be less than the resin gelation time (GT).

(4) Develop a 95% confidence envelope (bivariate confidence limits) for successful resin
infusion - i.e., range of permeability (K) and viscosity (rj) values that will result in optimal
Fill Time (FT) in more than 95% of cases.

The above two steps (3, 4) were based on the following considerations:
(a) The process of resin infusion in the preform and the associated infusion time is

influenced by statistical (non-deterministic) process uncertainties and variations in
key process parameters of resin viscosity and preform permeability. Statistical
analysis methodology presented captures these variations and uncertainties. The
random errors follow a normal distribution with a mean of zero and a constant
standard deviation.

(b) Data are randomly sampled.

The application of the sensitivity analysis for the uncertainty quantification using statistical
probabilistic methodology and computational simulations as discussed above for an illustrative
composite helicopter part geometry is presented next.

Sensitivity Analysis for a Complex Helicopter Prototype Part Model Geometry

Figure 2 illustrates the composite part geometry and the associated finite element mesh
employed for the deterministic resin infusion process flow modeling. Flow modeling
simulations were conducted to find a practical and optimal injection configuration for this
complex composite part that would be used in the actual resin infusion of the prototype
composite part. Line injection with a resin feed line in the middle of the composite part
optimized the FT for this part and provided practical infiision scheme setup for resin infusion
[21].

Statistical analysis of variations and uncertainties in two process parameters of resin viscosity
and permeability is presented next. A common injection strategy was constantly employed in all
cases. Statistical analysis focused on the two key property parameters, resin viscosity and
preform permeability, natural variations in which are likely to impact the completion of resin

306

infusion prior to gelation. Resin viscosity and preform material permeability values employed
are those for the fiber and resin used for this helicopter part geometry.

Results and Discussions:

(1) Parameter space data were generated for variations in these two key parameters, preform
permeability and resin viscosity. Means and variations for viscosity and permeability were
based on literature review, and ranges that can be expected in this field for these parameters.
Statistical analysis software SPSS [22] was used to generate 100 resin viscosity and 100
preform permeability values with the following properties: Both variables were generated
with given means, standard deviations and normally distributed random errors as follows: (rj
~ N(5.10 X 10"= (Ibf-s/in-), 0.28 x 10'^ (Ibf-s/in"), K~ N(3.41x 10"^ (in"), 0.59 x 10'^ (in")) as
shown in Table 1.

Single parameter Variation:

Single-parameter models for their influence on Fill time (FT) were obtained independently for
each of the two variables of interest (keeping the other variable constant). The associated fill
time were obtained from process flow modeling simulations for this composite part. It was
observed that each of the independent normal random variables T] and K were linearly related to
the outcome variable FT. Consequently, FT was also a normally distributed random variable for
each independent variable t) and K.

It was also observed that for each of the FT models mean FT was less than 55 minutes, the
gelation time (GT) for the resin used. Resin viscosity values varied within a narrow range and
had less impact on fill time with all FT(ri) values less than 55min. Preform permeability, K
values had a higher range of variations and hence had more impact on FT variability; however it
was observed that successful resin infusion (FT(K) < 55mins (GT)) occurred in 87% of cases,
and for permeability values, K>2.735 x 10"^ (in^).

Two parameter Variations:

Next, FT was estimated with both parameters varying in the model. From the 100 viscosity
values generated, one resin viscosity value was randomly selected from each quintile (20*
percentile group), these five viscosity values covered the entire range of the distribution (q: 4.56,
4.73, 5.07, 5.36, and 5.92 (x 10"^ Ibf-s/in"). Similarly, 50 values of permeability (K) were also
randomly and independently selected from the 100 values generated earlier. Each viscosity
value was matched with 50 permeability values creating an input vector of 250 to obtain a

307

distribution of the associated predicted fill time (FT) employing composite process flow
modeling simulations.

The distribution of fill time (FT) values predicted using resin infiision flow modeling was right
skewed with mean FT of 49.22 mins and standard deviation of 9.03 mins. Fill time (FT) variable
was normalized using a natural log transformation. Both independent random variables {r\, K)
were related to FT with viscosity, r|, explaining approximately 26% (R" = 0.26), and
permeability, K, explaining about 71% (R^=0.71) of the variation in FT. As expected, variations
in permeability had more impact on the time required for successful resin infusion than
variations in the viscosity.

One of the goals of this study was to develop a bivariate envelope of viscosity and permeability
ranges to predict successful resin infusion. A normal cumulative density fiinction (cdf) was
generated to obtain the probability of FT < 55mins (GT) or LnFT < 4.0 for each value of the
normal variable LnFT. A plot of cdf of LnFT against permeability for each viscosity value was
obtained and studied, and the permeability value corresponding to the 95"^ percentile of the cdf
of LnFT was noted. For example, as shown in figure 4, at viscosity level of r| = 4.56 x 10"^ (Ibf-
s/in'), a permeability value, K=3.58 x 10"^ (in"), will give a 95% probability that LnFT will be
less than 4.0 (or FT<55mins (GT)).

For each of the five viscosity values within its entire range (4.0 x 10'^ Ibf-s/in" - 6.0x10"^ Ibf-
s/in"), cdf for the normal random variable LnFT was plotted against permeability to obtain K
values for a 95% probability that LnFT will be less than 4.0 or fill time (FT =55mins), for this
composite part geometry and injection conditions. These K values were obtained for each r\
generating a 95%) confidence envelope for successfiil resin infusion for the given geometry and
injection conditions.

The confidence envelope shown in figure 5 provides a tool developed from statistical analysis
and simulations that manufacturing engineers can quickly use to predict the potential for
successful infusion taking into account variations in two key process parameters of permeability
and viscosity. If resin viscosity values and permeability values fall within the range (shaded
area - Infusion success chart; figure 5), the probability of successfiil resin infusion will be at
least 95%.

The potential of resin infiision success confidence envelope presented in figure 5 was verified by
actual manufacturing of the composite part in our composite processing laboratory. Prior to
resin infusion it was observed that resin viscosity value was 5.07x10'^ Ibf-s/in" and material
preform permeability was 3.5x10"* in". Both values are just outside the shaded region of the

308

confidence predicting a shade less than 95% probabihty of successful completion. Even with
minor variations in the vacuum pressure differential experienced during the actual process, actual
resin infusion was completed in 45 minutes. The estimated fill time from the "Probability -
LnFillTime" plot obtained during the statistical analysis is about 47 minutes. This matches well
the infusion time obtained from an independent process flow modeling simulation performed.
Even with minor variations in the vacuum pressure differential experienced during experimental
processing, actual resin infusion in the experiments was completed in about 45 minutes. The
experimental data and full simulation data clearly conform to confidence envelope predictions
for successful resin infusion. They clearly demonstrate the effectiveness of the simulation based
statistical analysis of variations and uncertainties in the development of confidence envelope and
its application.

The influence of the resin viscosity and permeability on the binary response of successful resin
infusion was further statistically analyzed following a logistic regression model [23]. Compared
to other regression models, logistic models allow the use of multiple explanatory variables [24]
on a binary outcome. Present statistical analysis involves two explanatory variables that pose
nonlinearity. Other parameters that influence the successful infusion can also be added to logistic
models, and has been employed in the present work.

Logistic Regression Analysis

Logistic regression model is one of the several binary response models that have been used to
model dichotomous outcomes in engineering. An interesting case study of this model for failure
mode and effect analysis in pharmaceutical tableting tools [25]. Another use of this model in
health care six sigma project can be found in [26]. Other examples of this model use for
understanding explanatory variables and binary response of space shuttle challenger disaster;
incubation temperature and sex (male/female) outcome of turtles hatched can be found in [23].

A logistic regression model containing two continuous independent variables (viscosity and
permeability) and a dichotomous dependent variable, FTD (FTD=1 if FT < 55mins (GT) and
FTD=0 if FT>55mins (GT).) in considered to predict successfial infusion.

General Logistic Regression Model is given by [23,24]:

logit{Y)= ^«(^)= a + jSi^i + JS2Z2 (3)

Where JI = Probability (Y = outcome of interest | Xi = xi, X? = x?)

309

ga+^lXi+^2^2

1+e«^+^i •'^1+^2^2 ^"^^

For our model:
Y = FTD = 1 or 0 (if FT < 55mins (GT) then FTD=1; else if FT >55mins (GT) then FTD=0)
X\ = viscosity (ri), and X2 = permeability (K),

The Logistic regression output in Table 3 suggests that the constant a is not a significant part of
the model and hence was excluded from the probability analysis. Viscosity and Permeability
remain independent and uncorrelated to each other. Probability of success of FTD (n) can also
be predicted using:

-14.44 J]+25.Telf

]_+ g-14,44Tl+2S.76K (5)

The coefficients can also be interpreted as follows:

Viscosity: For every 0.1 decrease in Viscosity in the given range, the odds of completing
infusion (success) increases 4.2 times. [(1/10 x 14.42) = 1.442; e*''*'*-* = 4.2]
Permeabilitv: For every 0.1 increase in permeability the odds of completing infiision (success)
increases 13.14 times. [(1/10 x 25.764) = 2.576; e*^"^' = 13.14]

As seen earlier, impact of permeability on FT is ahnost 3 times that of viscosity and logistic
regression analysis conforms well to sensitivity analysis inferences.

Concluding Remarks

In engineering applications, due to inherent uncertainty and variation in materials and processes,
model uncertainty quantification within an appropriate probabilistic and statistical framework is
required. A statistical simulation fi:amework within the context of resin infusion flow modeling
was presented and demonstrated in the present paper. Statistical analysis quantified that
variations in permeability have higher impact than viscosity variations for successful resin
infusion. Even minor variations in the preform layup can lead to notable changes in flow
progression and fill time than smaller changes in the resin viscosity. Statistical analysis of
uncertainties in parameters and confidence envelope as discussed in the present paper are
effective to provide boundaries of actual process parameters for successfiil resin infusion prior to
resin gelation time.

310

References

1. Mohan R, et al, The Application of Process Simulation Tools to Reduce Risks in Liquid
Molding of Composites. 5 7'^ American Helicopter Society Forum, May, 2001.

2. Rudd CD, Long AC, Kendal KN, Mangin CGE. Liquid Moulding Technologies: Woodhead
Publishing and SAE International, 1997.

3. Mohan RV, Shires DR, Tamma KK, Ngo ND. Flow Channels and Fiber Impregnation
Studies for the Process Modeling/Analysis of Complex Engineering Structures Manufactured
by Resin Transfer Molding. Polymer Composites 1998; 19(5): 527 - 542.

4. Bickerton S, Mohan RV, Advani SG, Shires DR. Experimental Analysis and Numerical
Modeling of Flow Channel Effects in Resin Transfer Molding. Polymer Composites 2000;
21(1).

5. Bruschke M, Advani SG. A Finite Element Control Volume Approach to Mold Filling in
Anisotropic Porous Media. Polymer Composites 1990; 11 (6).

6. Trouchu F, Gauvin R, Gao D. "Numerical Analysis of the Resin Transfer Molding Process
by the Finite Element Method. Advances in Polymer Technology 1993; 12(4): 329-342.

7. Cai Z. Simplified Mold Filling Simulation in Resin Transfer Molding. J. Composite
Materials 1992, 26(17): 2606-2630.

8. Lin R, Young W, Lee J. Mold Filling and Cure Modeling of RTM and SRIM Processes.
Composites Structures 1994; 27: 109 - 120.

9. Mohan RV, Ngo ND, Tamma KK. On a Pure Finite Element Methodology for Resin
Transfer Mold Filling Simulations. Polymer Engineering and Science 1999; 39: 26 - 43.

10. Mohan RV et al. Advanced Manufacturing of Large Scale Composite Structures: Process
Modeling, Manufacturing Simulations and Massively Parallel Computing Platforms.
Advances in Engineering Software \99%; 29: 2A9-26A.

11. Mohan RV et al. Three-Dimensional Resin Transfer Molding: Isothermal Process Modeling
and Implicit Tracking of Moving Fronts for Thick, Geometrically Complex Composites
Manufacturing Applications - Part 2. Numerical Heat Transfer - Part A, Applications 1999.
35:839-858.

12. Young WB. Gate Location Optimization in Liquid Composite Molding using Genetic
Algorithms./ Composite Materials 1994; 28:1098-1113.

311

13. Mathur R, Advani S, Fink B. Use of Genetic Algorithms to Optimize Gate and Vent
Locations for the Resin Transfer Molding Process. Polymer Composites 1999. 20: 167-178.

14. Mathur R, Advani, Fink B. A Sensitivity Based Gate Location Algorithm for Optimal Mold
Filling During the Resin Transfer Molding Process. Technical Report 2000. ARL TR-2771,
U. S. Army Research Laboratory, Aberdeen Proving Ground, MD.

15.Henz BJ., et al. Process Modeling of Composites by Resin Transfer Molding: Practical
Applications of Sensitivity Analysis for Isothermal Considerations. Int. J. Numerical
Methods for Heat and Fluid Flow imi; 13: 415-447.

16. Yu HW, Young WB. Optimal Design of Process Parameters for Resin Transfer Molding. J.
Composite Materials 1997; 31: 1113-1140.

17. Luo J. et al. Optimum Tooling Design for Resin Transfer Molding with Virtual
Manufacturing and Artificial Intelhgence. Composites: Part A 2001; 32: 877-888.

18. Henz, B., Mohan, R., Shires, D. A Hybrid Global-Local Approach for Optimization of
Injection Gate Locations in Liquid Composite Molding Process Simulations, Composites -
Part A 2001 ^i^: 1932-1946.

19. Engineering Statistics Handbook: NIST/SEMATECH e-Handbook of Statistical Methods,
http://www.itl.nist.gov/div898/handbook. April 2011.

20. Devore, J.L.: Probability and Statistics for Engineering and the Sciences, 7"^ edition, Boston:
Brooks/Cole; 2009

21. H. Shiferaw, M.S. Thesis, North Carolina A&T State University, 2011.

22. SPSS: IBM Corp. Released 2010. IBM SPSS Statistics for Windows, Version 19.0. Armonk,
NY: IBM Corp.

23. Hosmer DW, Lemeshow S; Applied Logistic Regression (Wiley Series in Probability and
Statistics). V^ edition. New York: Wiley; 2013.

24. D. Cook, P. Dixon, W. M. Duckworth, M. S. Kaiser, K. Koehler, W. Q. Meeker, W. R.
Stephenson, Binary Response and Logistic Regression Analysis. Chapter 3, Part of Iowa
State University NSF/ILI Project Beyond Traditional Statistical Methods, 2001.

25. M. Al-Tahat, A. Jawwad, and Y. Nahleh. Ordinal Logistic Regression Model of Failure

Mode and Effects Analysis in Pharmaceutical Tableting Tools. Engineering Failure Analysis
2013; 27:322-332.

312

26. F. Meulen, T. Vermaat, and P. Willems. Case Study: An Application of Logistics Regression
in a Six Sigma Project in Health Care. Quality Engineering 2011; 23:113-124.

313

1, P)r«f«m» Mmi^mtmtftq $, 8»itK»l«liwg mniH f**al Pro^isiitnjjr

J, Mt)t4 Clsitifo

Figure 1: Schematic of Liquid Composite Molding Process for Composite Structures

(a) (b)

Figure 2: a) composite part geometry, b) Finite element geometry

314

;:^

Q - ■ ■
m^mi ■ ,

\
\

a

;0O 150 }D0 3.50 4X 4 fO SCO

Viscosity Pirmtability

(a) (b)
Figure 3: Fill Time was linearly related to (a) Viscosity (directly) and (b) Permeability

(inversely)

s
^

too ODO °°°°

0

o

o

a
0

o

o

0

ParniBability

Figure 4: Cumulative Density Function (cdf) of LnFT against Permeability, at viscosity of
4.56 X 10'^ (Ibf-s/in^).

315

»IW-

^m" /I
s

sso-
z'

g 5se-
^.^^,

g sw

* *m>-

,.-

,,''

4,*fl-'

*26"

„r ■ t " • 4i0(H
^m ^i*

f *-» «»
(**ini«idriny

Figure 5: Range of viscosity and permeability values for 95% probability of successful
infusion before gelation

316

C. Educational Activity and Student Support

North Carolina A & T State University (NCAT) is a land grant, historically black college and
university (HBCU) with the graduate Masters Computational Science and Engineering (CSE)
program established in 2005. The present project efforts were instrumental in the approval of the
Ph.D. program in computational science and engineering (CSE) that has admitted its first class in
fall 2010. NCAT also recently established the graduate programs (MS and Ph.D.) in
nanoengineering. Research initiated and established through the ONR award provided the
foundation for this establishment of the new program and paved the way for NCAT to lead such
efforts in this arena. NCAT is the first HBCU with a graduate program in nanoengineering.
Currently the CSE graduate programs has nearly 25 students and the newly established
nanoengineering program has a class of 50 students, majority of whom are under-represented US
citizens within the first year of its establishment.

Dr. Mohan is currently a faculty member of nanoengineering focusing on developing the

computational nanoengineering area. Within the past two years. Dr. Mohan led the
computational nanoengineering focus area efforts in research, education and infrastructure
development. The present ONR efforts have enabled these activities and in addition to the
research initiatives and activities discussed in this report. Dr. Mohan's efforts had resulted in
new research activities focusing on nano to continuum modeling of cementitious materials;
computational modeling of bio-nano interfaces; integrated computational materials science and
engineering for poljTneric composite materials. All these would not have been possible without
the ONR funding. The established and growing research in computational nanoengineering is
fiieling these additional growths. In addition. Dr. Mohan also developed and taught a new
graduate course in nanomodeling and applications.

The new research directions and completed research over the years supported through ONR
research funding enabled the development and teaching of these new graduate courses. The
research areas related to computational nanomechanics, multi-scale modeling and
nanoengineered materials leveraged and enabled through the present funding is benefiting the
students of this program and will also leverage the opportunities from this new graduate

program. The PI and a participating faculty member (Dr. Kelkar) are now part of this new
graduate program in nanoengineering. The project funding was utilized to attract qualified
minorities to focus in the research areas of computational nanoengineering. The educational
activity fiinds from the project fiinding provided financial support to several graduate students to
obtain graduate education at North Carolina A&T State University. The names and the
demographic details of the M.S. and Ph.D. graduate students supported through this project
funding are listed below. All these graduate students were either ftilly or partially supported
through the project funding either directly or through the faculty release time funds.

317

Richard Haney Ph.D., White, USC, Male (Graduated, Currently at
Army Research Laboratory, APG, MD)

Henok Shiferaw M.S., African American, LPR, Male (Graduated,
Currently working for Federal Government)

Elvis Fefey African American, LPR, Male

(Graduated with MS in Computational Science and
Engineering; working with Hewlett Packard)

Mariamma Sibide M.S. African American, Female (Graduate with a MS in
computational science and engineering and pursuing
Ph.D. in computational science and engineering.

Krystal Knight M.S., African American, USC, Female (Graduated with
a MS in computational science and engineering) and
employed with industry.

Connie Sidberry African American, USC, Female (Graduated with MS in
Computational Science and Engineering)

Patrick McCarter African American, USC, Male (Graduated with MS in
Computational Science and Engineering and pursuing
Ph.D.)

Moussa Seek African American (Graduated with MS in
Computational Science and Engineering and with
computing industry)

Bhushan Thatte Asian, Male (Graduated with MS in Computational
Science and Engineering and working in software
industry)

Matthew Wiggins African American, USC, Male (Graduated with MS in
Computational Science and Engineering)

Hamed Sibide African American, Male (Graduated with M.S. in
Computational Science and Engineering and working in
computing industry)

Abu Rasel Asian, Male (Graduated with MS in Computational
Science and Engineering; currently employed in

318

computing industry)

Boding Liu Asian, Male (Graduated with MS in computational
science and engineering)

Terry Corbett Ph.D., African American, USC, Male

Naveen Chnnannavar Asian, Male (Graduate with MS in Computational
Science and Engineering and employed with industry)

Kristen Rhinehardt M.S., African American, USC, Female (Graduated with
MS in Nanoengineering) (Pursuing Ph.D. in
Nanoengineering)

Nafisa Sirelkhatim Ph.D., African American, USC, Female (Pursuing Ph.D.
in Nanoengineering)

Henry Ochije M.S., African American, Male (Graduated with MS in
Nanoengineering, Pursuing Ph.D. in Nanoscience)

Van Nguyen Ph.D., Asian, USC, Female (Pursuing Ph.D. in
Computational Science and Engineering)

Ahmed Mohammed Ph.D., USC, Male (Graduated with Ph.D. in
Computational Science and Engineering and employed
as a post-doc)

Mahendran Samykano Ph.D., Male (Pursuing Ph.D. in Nanoengineering)

The project funding is enabling the education and training of future workforce (esp.
underrepresented minorities) in this critical technology area with six Ph.D. students supported
through this funding at various levels.

The project efforts enabled the post-doctoral training and mentorship of two researchers
(including one female), and a research scientist. Faculty support for the participating faculty was
also provided to Dr. Ken Flurchick, and others as part of the project support.

319

D. Computational and Visualization Hardware / Software |

Computational and visualization hardware/software resources are critical components of
computational modeling research. The project funding was instrumental in supporting the
associated software and system upgrades during the project period benefiting the research and
educational needs of the students, faculty and the research focus. In addition, the project funding
was instrumental in the award of a NSF major research instrumentation award to acquire a multi-
processor SUN Blade system that is currently under installation. The project funding supported
the hardware upgrades to the visualization system, new computer hardware and peripherals,
software licensing for engineering and visualization analysis software needs of the computational
science and engineering graduate program. Some of this software includes ANSYS for finite
element analysis, Accelerys and Materials Studio for molecular modeling, COMSOL for multi-
physics computational modeling. In addition, the project activities also were instrumental in
enabling the analysis capabilities through computational modeling codes such as LAAMPS,
GROMACS, etc., that were not regularly employed. The present project efforts have a
significant outreach for the research and education in the areas of computational mechanics and
materials and enabled the recruitment of under-represented minorities in these critical technical
areas. Recently, in August 2014, part of the project ftmds was utilized to support the purchase of
a Cray XC-30 system that would not have been possible without the ONR funding.

320

